A226566 Numbers k such that Sum_{d|k} sigma(d)^3/d is an integer, where d are the divisors of k.
1, 201, 981, 1962, 3663, 7326, 10791, 12753, 15879, 21582, 25506, 30411, 56898, 60822, 135749, 140283, 172161, 212454, 266727, 280566, 334521, 344322, 360027, 395343, 399267, 407247, 507177, 625878, 669042, 720054, 739674, 790686, 798534, 881919, 1014354, 1221741
Offset: 1
Keywords
Examples
Divisors of 981 are 1, 3, 9, 109, 327, 981. sigma(1) = 1, sigma(3) = 4, sigma(9) = 13, sigma(109) = 110, sigma(327) = 440, sigma(981) = 1430. (1^3/1 + 4^3/3 + 13^3/9 + 110^3/109 + 440^3/327 + 1430^3/981) = 3253822.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..510 (terms below 10^10)
Programs
-
Maple
with(numtheory); ListA226566:=proc(q) local a,b,k,n; for n from 1 to q do a:=[op(divisors(n))]; b:=add(sigma(a[k])^3/a[k],k=1..nops(a)); if type(b,integer) then print(n); fi; od; end: ListA226566(10^6);
-
Mathematica
aQ[n_] := IntegerQ[DivisorSum[n, DivisorSigma[1, #]^3/# &]]; Select[Range[10^5], aQ] (* Amiram Eldar, Sep 18 2019 *)
-
PARI
isok(n) = denominator(sumdiv(n, d, sigma(d)^3/d)) == 1; \\ Michel Marcus, Sep 18 2019