A108278
Numbers k such that k^2-1 and k^2+1 are semiprimes.
Original entry on oeis.org
12, 30, 42, 60, 102, 108, 198, 312, 462, 522, 600, 810, 828, 1020, 1050, 1062, 1278, 1452, 1488, 1872, 1950, 2028, 2130, 2142, 2340, 2790, 2802, 2970, 3000, 3120, 3252, 3300, 3330, 3672, 3930, 4020, 4092, 4230, 4548, 4800, 5280, 5640, 5652, 5658, 6198
Offset: 1
a(1)=12 because 12^2-1=143=11*13 and 12^2+1=145=5*29 are both semiprimes.
Cf.
A001358 (semiprimes),
A069062 (k^2-1 and k^2+1 have the same number of divisors),
A014574 (average of twin prime pairs).
-
IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..7000] | IsSemiprime(n^2+1) and IsSemiprime(n^2-1) ]; // Vincenzo Librandi, Jan 22 2016
-
filter:= n -> isprime(n+1) and isprime(n-1) and numtheory:-bigomega(n^2+1)=2:
select(filter, [seq(i,i=2..1000, 2)]); # Robert Israel, Jan 24 2016
-
Select[Range[7000], PrimeOmega[#^2 - 1] == PrimeOmega[#^2 + 1]== 2 &] (* Vincenzo Librandi, Jan 22 2016 *)
-
isok(n) = (bigomega(n^2-1) == 2) && (bigomega(n^2+1) == 2); \\ Michel Marcus, Jan 22 2016
A373209
Numbers k such that k^2 - 1 and k^2 + 1 have 8 divisors each.
Original entry on oeis.org
68, 112, 128, 162, 200, 212, 252, 294, 318, 336, 338, 372, 448, 450, 498, 502, 542, 578, 592, 598, 612, 648, 672, 678, 708, 752, 762, 808, 812, 852, 878, 888, 938, 952, 992, 996, 1012, 1038, 1098, 1102, 1116, 1122, 1188, 1202, 1212, 1248, 1258, 1328, 1362, 1380
Offset: 1
68 is a term: both 68^2 - 1 = 4623 = 3 * 23 * 67 and 68^2 + 1 = 4625 = 5^3 * 37 have 8 divisors.
A373903
Numbers k such that k^2 - 1 has fewer divisors than k^2 + 1.
Original entry on oeis.org
18, 72, 132, 138, 182, 192, 228, 242, 268, 278, 282, 327, 348, 360, 378, 382, 408, 418, 432, 438, 618, 632, 642, 660, 682, 684, 693, 718, 772, 788, 798, 822, 843, 858, 882, 918, 948, 957, 1032, 1048, 1068, 1092, 1113, 1118, 1143, 1152, 1227, 1228, 1230, 1282, 1292
Offset: 1
18 is a term since 18^2 - 1 = 323 has 4 divisors (1, 17, 19 and 323) while 18^2 + 1 = 325 has 6 divisors (1, 5, 13, 25, 65 and 325).
-
Select[Range[2, 1300], DivisorSigma[0, #^2 - 1] < DivisorSigma[0, #^2 + 1] &]
-
is(k) = k > 1 && numdiv(k^2 - 1) < numdiv(k^2 + 1);
A373213
Numbers k such that k^2 - 1 and k^2 + 1 have 6 divisors each.
Original entry on oeis.org
168, 1368, 97968, 10374840, 16104168, 44049768, 68674368, 100741368, 281803368, 486775968, 1177381968, 1262878368, 1336852968, 2321986968, 2404627368, 3476635368, 4374102768, 5102102040, 5142754368, 5182128168, 5385651768, 6035269968, 9218496168, 10657878168
Offset: 1
168 is a term: both 168^2 - 1 = 28223 = 13^2 * 167 and 168^2 + 1 = 28225 = 5^2 * 1129 have 6 divisors.
A373756
Table read by antidiagonals: T(n,k) is the smallest m > 1 such that m^2 - 1 and m^2 + 1 have 2n and 2k divisors, respectively, or -1 if no such m exists.
Original entry on oeis.org
2, 4, -1, 10, 3, -1, 14, 8, 18, -1, 28560, 5, 168, 72, -1, 26, 9, 32, 360, 16068, -1, 25071688922457240, 15, 7, 68, 369465818568, 1620, -1, 56, 728, 332, 28398240, 182, 744768, 1407318, -1, 170, 11, 161245807967271241368, 98, 248872305817685706212070112080, 132, 4175536688568, 642, -1
Offset: 1
T(5,1) is the smallest integer m > 1 such that m^2 - 1 and m^2 + 1 have 10 and 2 divisors, respectively; since m^2 - 1 cannot be the 9th power of a prime, this requires that p^4 * q + 1 = m^2 = r - 1, where p, q, and r are distinct primes. The smallest such m is 28560, which gives a solution with p = 13, q = 28559, r = 815673601.
T(5,5) is the smallest integer m > 1 such that m^2 - 1 and m^2 + 1 each have 10 divisors; since neither m^2 - 1 nor m^2 + 1 can be the 9th power of a prime, this is the smallest m such that p^4 * q + 1 = m^2 = r^4 * s - 1, where p, q, r, and s are distinct primes: 22335421^4 * 248872305817685706212070112079 + 1 = 248872305817685706212070112080^2 = 13^4 * 2168601400616633822685176617536070987718973054081571441 - 1.
The first eight antidiagonals of the table are shown below.
.
n\k| 1 2 3 4 5 6 7 8
---+------------------------------------------------------------------
1 | 2 -1 -1 -1 -1 -1 -1 -1
2 | 4 3 18 72 16068 1620 1407318
3 | 10 8 168 360 369465818568 744768
4 | 14 5 32 68 182
5 | 28560 9 7 28398240
6 | 26 15 332
7 | 25071688922457240 728
8 | 56
Showing 1-5 of 5 results.
Comments