A069077 Triangular numbers such that the product of digits is also a (positive) triangular number.
1, 3, 6, 66, 153, 231, 351, 465, 741, 1326, 2556, 5671, 6786, 14535, 21115, 24531, 25651, 33411, 43956, 57291, 58311, 71253, 92665, 95266, 123753, 153181, 167331, 278631, 325221, 341551, 351541, 372816, 459361, 491536, 516636, 521731, 567645, 572985, 613278
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..457
Programs
-
Magma
[m:m in [1..600000]|not 0 in Intseq(m) and IsSquare(8*m+1) and IsSquare(8*(&*Intseq(m))+1)]; // Marius A. Burtea, Aug 12 2019
-
Mathematica
aQ[n_] := (p = Times @@ IntegerDigits[n]) > 0 && IntegerQ @ Sqrt[8p + 1]; t[n_] := n(n+1)/2; Select[t[Range[10^3]], aQ] (* Amiram Eldar, Aug 12 2019 *) Select[Accumulate[Range[1500]],FreeQ[IntegerDigits[#],0]&&OddQ[Sqrt[8 Times@@IntegerDigits[ #]+1]]&] (* Harvey P. Dale, May 01 2023 *)
Extensions
More terms from Jason Earls and Lior Manor, May 15 2002