A061380 Triangular numbers with product of digits also a triangular number.
0, 1, 3, 6, 10, 66, 105, 120, 153, 190, 210, 231, 300, 351, 406, 465, 630, 703, 741, 780, 820, 903, 990, 1035, 1081, 1326, 1540, 1770, 1830, 2016, 2080, 2556, 2701, 2850, 3003, 3081, 3160, 3240, 3403, 3570, 4005, 4095, 4560, 4950, 5050, 5460, 5671, 6105
Offset: 1
Examples
153 is a triangular number and the product of digits 15 is also a triangular number.
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[t: n in [0..110] | IsSquare(8*p+1) where p is &*Intseq(t) where t is (n*(n+1) div 2)]; // Bruno Berselli, Jun 30 2011
-
Maple
q:= n-> (l-> issqr(1+8*mul(i,i=l)))(convert(n, base, 10)): select(q, [seq(i*(i+1)/2, i=0..110)])[]; # Alois P. Heinz, Mar 17 2023
-
Mathematica
tn=Table[n (n+1)/2, {n, 0, 110}] ;Select[tn,MemberQ[tn,Times@@IntegerDigits[#]]&] (* James C. McMahon, Sep 25 2024 *)
-
PARI
isok(k) = ispolygonal(k, 3) && ispolygonal(vecprod(digits(k)), 3); \\ Michel Marcus, Mar 17 2023
Extensions
More terms from Erich Friedman, May 08 2001
Offset 1 from Michel Marcus, Mar 17 2023
Comments