cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061380 Triangular numbers with product of digits also a triangular number.

Original entry on oeis.org

0, 1, 3, 6, 10, 66, 105, 120, 153, 190, 210, 231, 300, 351, 406, 465, 630, 703, 741, 780, 820, 903, 990, 1035, 1081, 1326, 1540, 1770, 1830, 2016, 2080, 2556, 2701, 2850, 3003, 3081, 3160, 3240, 3403, 3570, 4005, 4095, 4560, 4950, 5050, 5460, 5671, 6105
Offset: 1

Views

Author

Amarnath Murthy, May 02 2001

Keywords

Examples

			153 is a triangular number and the product of digits 15 is also a triangular number.
		

Crossrefs

Programs

  • Magma
    [t: n in [0..110] | IsSquare(8*p+1) where p is &*Intseq(t) where t is (n*(n+1) div 2)];  // Bruno Berselli, Jun 30 2011
    
  • Maple
    q:= n-> (l-> issqr(1+8*mul(i,i=l)))(convert(n, base, 10)):
    select(q, [seq(i*(i+1)/2, i=0..110)])[];  # Alois P. Heinz, Mar 17 2023
  • Mathematica
    tn=Table[n (n+1)/2, {n, 0, 110}] ;Select[tn,MemberQ[tn,Times@@IntegerDigits[#]]&] (* James C. McMahon, Sep 25 2024 *)
  • PARI
    isok(k) = ispolygonal(k, 3) && ispolygonal(vecprod(digits(k)), 3); \\ Michel Marcus, Mar 17 2023

Extensions

More terms from Erich Friedman, May 08 2001
Offset 1 from Michel Marcus, Mar 17 2023

A285079 Oblong numbers the product of whose digits are positive oblong numbers.

Original entry on oeis.org

2, 6, 12, 56, 132, 156, 756, 2756, 4556, 6162, 6972, 7656, 13572, 21756, 31152, 33672, 45156, 61752, 84972, 153272, 166872, 279312, 467172, 626472, 661782, 1273512, 1412532, 1541322, 1568756, 1596432, 1786232, 1867322, 2678132, 2817362, 3416952, 3521252
Offset: 1

Views

Author

Melvin Peralta, Apr 09 2017

Keywords

Comments

Oblong numbers are numbers of the form k*(k+1) (A002378).

Crossrefs

Programs

  • Maple
    filter:= proc(x) local t; t:= convert(convert(x,base,10),`*`);
    t > 0 and issqr(1+4*t); end proc:
    select(filter, [seq(x*(1+x),x=1..10^4)]); # Robert Israel, Apr 14 2017
  • Mathematica
    f[x_] := Sqrt[1 + 4 (Times @@ IntegerDigits[x])]; Select[Table[n (n + 1), {n, 1, 10000}], f[#] > 1 && Mod[f[#], 2] == 1 &]
Showing 1-2 of 2 results.