cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069145 Numbers k such that A069088(k) divides k.

Original entry on oeis.org

1, 4, 24, 81, 90, 112, 162, 324, 360, 384, 648, 810, 864, 960, 1024, 1944, 2592, 2688, 3072, 3240, 3456, 3969, 4320, 5040, 5488, 5760, 7128, 7168, 7776, 8640, 9000, 9072, 9504, 10368, 11025, 11200, 15360, 15876, 17280, 18144, 21168, 21504, 23296
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Crossrefs

Cf. A069088.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p + 1)*(e + 1)/2, (p + 1)*e/2 + 1]; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[25000], Divisible[#, s[#]] &] (* Amiram Eldar, Sep 03 2020 *)
  • PARI
    for(n=1,35000,if(n%sumdiv(n,d,core(d))==0,print1(n,",")))

A074786 Numbers k such that phi(k) = Sum_{d|k} core(d) where core(x) is the squarefree part of x (A007913).

Original entry on oeis.org

1, 99, 1080, 1836, 4743, 5670, 7644, 8307, 14384, 14784, 15225, 15824, 16065, 20300, 21584, 25704, 29760, 34544, 46816, 71568, 94240, 128412, 169290, 264160, 266266, 312480, 331731, 364941, 404550, 445050, 454575, 458052, 479655, 497781
Offset: 1

Views

Author

Benoit Cloitre, Sep 07 2002

Keywords

Comments

Numbers k such that A000010(k) = A069088(k). - Amiram Eldar, Apr 28 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p+1)*(e+1)/2, (p+1)*e/2 + 1] / ((p-1)*p^(e-1)); q[1] = True; q[n_] := Times @@ f @@@ FactorInteger[n] == 1; Select[Range[500000], q] (* Amiram Eldar, Apr 28 2025 *)
  • PARI
    isok(n) = eulerphi(n) == sumdiv(n, d, core(d)); \\ Michel Marcus, Aug 09 2013
    
  • PARI
    isok(k) = {my(f = factor(k)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e % 2, (p+1)*(e+1)/2, (p+1)*e/2 + 1) / ((p-1)*p^(e-1))) == 1;} \\ Amiram Eldar, Apr 28 2025

Extensions

More terms from Michel Marcus, Aug 09 2013

A198286 a(n) = Sum_{d|n} (A053143(d) or smallest square divisible by d).

Original entry on oeis.org

1, 5, 10, 9, 26, 50, 50, 25, 19, 130, 122, 90, 170, 250, 260, 41, 290, 95, 362, 234, 500, 610, 530, 250, 51, 850, 100, 450, 842, 1300, 962, 105, 1220, 1450, 1300, 171, 1370, 1810, 1700, 650, 1682, 2500, 1850, 1098, 494, 2650, 2210, 410, 99, 255, 2900, 1530, 2810
Offset: 1

Views

Author

Antonio Roldán, Oct 23 2011

Keywords

Comments

Multiplicative function with a(p^e) = 1+2*(p^(e+2)-p^2)/(p^2-1) if e is even else a(p^e)=(1+p^2)((p^(e+1)-1)/(p^2-1)). Examples: a(9)=a(3^2)=1+2*((81-9)/(9-1))=1+2*9=19; a(8)=a(2^3)=(1+4)((16-1)/(4-1))=5*5=25.
Another definition of a(n): Sum_{d|n} (d*core(d)), where core(d) is the squarefree part of d (A007913), i.e., inverse Mobius transform of A053143.

Examples

			a(18) = 95 because 18=2*3^2, so a(18) = (1+4)(1+9+9) = 5*19 = 95.
a(20) = 234 because 20=2^2*5, so a(20) = (1+4+4)(1+25) = 9*26 = 234.
		

Crossrefs

Similar to A068976 (sum of square part of d) and A069088 (sum of squarefree part of d).

Programs

  • Mathematica
    ssq[n_] := For[k=1, True, k++, If[ Divisible[s = k^2, n], Return[s]]]; a[n_] := Sum[ ssq[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 53}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := If[OddQ[e], (1+p^2)((p^(e+1)-1)/(p^2-1)), 1+2*(p^(e+2)-p^2)/(p^2-1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 53] (* Amiram Eldar, Sep 05 2020 *)
  • PARI
    a(n)=sumdiv(n,d,d*core(d)) \\ Charles R Greathouse IV, Oct 30 2011

Formula

Dirichlet g.f.: zeta(s)*zeta(s-2)*zeta(2s-2)/zeta(2s-4). - R. J. Mathar, Mar 12 2012
Sum_{k=1..n} a(k) ~ Pi^2 * Zeta(3) * n^3 / 45. - Vaclav Kotesovec, Feb 02 2019
Showing 1-3 of 3 results.