cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069090 Primes none of whose proper initial segments are primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 41, 43, 47, 61, 67, 83, 89, 97, 101, 103, 107, 109, 127, 149, 151, 157, 163, 167, 181, 401, 409, 421, 443, 449, 457, 461, 463, 467, 487, 491, 499, 601, 607, 631, 641, 643, 647, 653, 659, 661, 683, 691, 809, 811, 821, 823, 827, 829
Offset: 1

Views

Author

Joseph L. Pe, Apr 05 2002

Keywords

Examples

			The proper initial segments of 499 are 4 and 49, none of which are primes. So 499 is a term of the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a069090 n = a069090_list !! (n-1)
    a069090_list = filter
       (all (== 0) . map (a010051 . read) . init . tail . inits . show)
       a000040_list
    -- Reinhard Zumkeller, Mar 11 2014
    
  • Maple
    isA069090 := proc(n)
        local dgs,l ;
        if isprime(n) then
            dgs := convert(n,base,10) ;
            ndgs := nops(dgs) ;
            for l from 1 to ndgs-1 do
                add( op(ndgs+i-l+1,dgs)*10^i,i=0..l-1) ;
                if isprime(%) then
                    return false;
                end if;
            end do:
            true ;
        else
            false ;
        end if;
    end proc:
    for n from 2 to 830 do
        if isA069090(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Dec 15 2016
  • Mathematica
    Select[Prime[Range[200]],NoneTrue[FromDigits/@Table[Take[ IntegerDigits[ #], n],{n,IntegerLength[#]-1}],PrimeQ]&] (* The program uses the NoneTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 24 2016 *)
  • PARI
    ina(n)=if(!isprime(n),return(0));while(n>9,n\=10;if(isprime(n),return(0)));1 \\ Franklin T. Adams-Watters, Jun 26 2009
    
  • Python
    from sympy import primerange, isprime
    def ok(p):
        s = str(p)
        if len(s) == 1: return True
        return all(not isprime(int(s[:i])) for i in range(1, len(s)))
    def aupto(lim):
        alst = []
        for p in primerange(1, lim+1):
            if ok(p): alst.append(p)
        return alst
    print(aupto(829)) # Michael S. Branicky, Jul 03 2021

Extensions

More terms from Franklin T. Adams-Watters, Jun 26 2009