A069106 Composite numbers k such that k divides F(k-1) where F(j) are the Fibonacci numbers.
442, 1891, 2737, 4181, 6601, 6721, 8149, 13201, 13981, 15251, 17119, 17711, 30889, 34561, 40501, 51841, 52701, 64079, 64681, 67861, 68101, 68251, 78409, 88601, 88831, 90061, 96049, 97921, 115231, 118441, 138601, 145351, 146611, 150121, 153781, 163081, 179697, 186961, 191351, 194833
Offset: 1
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, Chap. X, p. 150.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
C
#include
#include #define STARTN 10 #define N_OF_MILLER_RABIN_TESTS 5 int main() { mpz_t n, f1, f2; int flag=0; /* flag? 0: f1 contains current F[n-1] 1: f2 = F[n-1] */ mpz_set_ui (n, STARTN); mpz_init (f1); mpz_init (f2); mpz_fib2_ui (f1, f2, STARTN-1); for (;;) { if (mpz_probab_prime_p (n, N_OF_MILLER_RABIN_TESTS)) goto next_iter; if (mpz_divisible_p (!flag? f1:f2, n)) { mpz_out_str (stdout, 10, n); printf (" "); fflush (stdout); } next_iter: mpz_add_ui (n, n, 1); mpz_add (!flag? f2:f1, f1, f2); flag = !flag; } } -
Haskell
a069106 n = a069106_list !! (n-1) a069106_list = [x | x <- a002808_list, a000045 (x-1) `mod` x == 0] -- Reinhard Zumkeller, Jul 19 2013
-
Mathematica
A069106[nn_] := Select[Complement[Range[2,nn],Prime[Range[2,PrimePi[ nn]]]],Divisible[ Fibonacci[ #-1],#]&] (* Harvey P. Dale, Jul 05 2011 *)
-
PARI
fibmod(n,m)=((Mod([1,1;1,0],m))^n)[1,2] is(n)=!isprime(n) && !fibmod(n-1,n) && n>1 \\ Charles R Greathouse IV, Oct 06 2016
Extensions
Corrected and extended (with C program) by Ralf Stephan, Oct 13 2002
a(35)-a(40) added by Reinhard Zumkeller, Jul 19 2013
Comments