cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069106 Composite numbers k such that k divides F(k-1) where F(j) are the Fibonacci numbers.

Original entry on oeis.org

442, 1891, 2737, 4181, 6601, 6721, 8149, 13201, 13981, 15251, 17119, 17711, 30889, 34561, 40501, 51841, 52701, 64079, 64681, 67861, 68101, 68251, 78409, 88601, 88831, 90061, 96049, 97921, 115231, 118441, 138601, 145351, 146611, 150121, 153781, 163081, 179697, 186961, 191351, 194833
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2002

Keywords

Comments

Primes p congruent to 1 or 4 (mod 5) divide F(p-1) (cf. A045468 and [Hardy and Wright]).

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, Chap. X, p. 150.

Crossrefs

Subsequence of A123976.
Cf. A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).

Programs

  • C
    #include  #include  #define STARTN 10 #define N_OF_MILLER_RABIN_TESTS 5 int main() { mpz_t n, f1, f2; int flag=0; /* flag? 0: f1 contains current F[n-1] 1: f2 = F[n-1] */ mpz_set_ui (n, STARTN); mpz_init (f1); mpz_init (f2); mpz_fib2_ui (f1, f2, STARTN-1); for (;;) { if (mpz_probab_prime_p (n, N_OF_MILLER_RABIN_TESTS)) goto next_iter; if (mpz_divisible_p (!flag? f1:f2, n)) { mpz_out_str (stdout, 10, n); printf (" "); fflush (stdout); } next_iter: mpz_add_ui (n, n, 1); mpz_add (!flag? f2:f1, f1, f2); flag = !flag; } }
    
  • Haskell
    a069106 n = a069106_list !! (n-1)
    a069106_list = [x | x <- a002808_list, a000045 (x-1) `mod` x == 0]
    -- Reinhard Zumkeller, Jul 19 2013
    
  • Mathematica
    A069106[nn_] := Select[Complement[Range[2,nn],Prime[Range[2,PrimePi[ nn]]]],Divisible[ Fibonacci[ #-1],#]&] (* Harvey P. Dale, Jul 05 2011 *)
  • PARI
    fibmod(n,m)=((Mod([1,1;1,0],m))^n)[1,2]
    is(n)=!isprime(n) && !fibmod(n-1,n) && n>1 \\ Charles R Greathouse IV, Oct 06 2016

Extensions

Corrected and extended (with C program) by Ralf Stephan, Oct 13 2002
a(35)-a(40) added by Reinhard Zumkeller, Jul 19 2013