cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069128 Centered 15-gonal numbers: a(n) = (15*n^2 - 15*n + 2)/2.

Original entry on oeis.org

1, 16, 46, 91, 151, 226, 316, 421, 541, 676, 826, 991, 1171, 1366, 1576, 1801, 2041, 2296, 2566, 2851, 3151, 3466, 3796, 4141, 4501, 4876, 5266, 5671, 6091, 6526, 6976, 7441, 7921, 8416, 8926, 9451, 9991, 10546, 11116, 11701, 12301, 12916, 13546, 14191, 14851, 15526
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Centered pentadecagonal numbers or centered quindecagonal numbers or centered pentakaidecagonal numbers. - Omar E. Pol, Oct 03 2011

Examples

			a(5) = 151 because (15*5^2 - 15*5 + 2)/2 = 151.
		

Crossrefs

Programs

Formula

a(n) = (15*n^2 - 15*n + 2)/2.
a(n) = 15*n+a(n-1)-15 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+13*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
Binomial transform of [1, 15, 15, 0, 0, 0, ...] and Narayana transform (A001263) of [1, 15, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
a(n) = A194715(n-1) + 1. - Omar E. Pol, Oct 03 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(7/15)*Pi/2)/sqrt(105).
Sum_{n>=1} a(n)/n! = 17*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 17/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 15*x^2/2) - 1. - Nikolaos Pantelidis, Feb 07 2023