cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069132 Centered 19-gonal numbers.

Original entry on oeis.org

1, 20, 58, 115, 191, 286, 400, 533, 685, 856, 1046, 1255, 1483, 1730, 1996, 2281, 2585, 2908, 3250, 3611, 3991, 4390, 4808, 5245, 5701, 6176, 6670, 7183, 7715, 8266, 8836, 9425, 10033, 10660, 11306, 11971, 12655, 13358, 14080, 14821, 15581, 16360, 17158
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Binomial transform of [1, 19, 19, 0, 0, 0, ...] and Narayana transform (A001263) of [1, 19, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011

Examples

			a(5)= 191 because (19*5^2 - 19*5 + 2)/2 = (475 - 95 + 2)/2 = 382/2 = 191.
		

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = (19*n^2 - 19*n + 2)/2.
a(n) = 19*n + a(n-1) - 19 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1 + 17*x + x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=20, a(2)=58. - Harvey P. Dale, Aug 21 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(11/19)*Pi/2)/sqrt(209).
Sum_{n>=1} a(n)/n! = 21*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 21/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 19*x^2/2) - 1. - Nikolaos Pantelidis, Feb 06 2023