cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069183 Expansion of 1/((1-x)(1-x^2)^2(1-x^3)(1-x^6)).

Original entry on oeis.org

1, 1, 3, 4, 7, 9, 15, 18, 27, 33, 45, 54, 72, 84, 108, 126, 156, 180, 220, 250, 300, 340, 400, 450, 525, 585, 675, 750, 855, 945, 1071, 1176, 1323, 1449, 1617, 1764, 1960, 2128, 2352, 2548, 2800, 3024, 3312, 3564, 3888, 4176, 4536, 4860, 5265, 5625, 6075
Offset: 0

Views

Author

Rick L. Shepherd, Apr 10 2002

Keywords

Crossrefs

Cf. A029000.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^6)) )); // G. C. Greubel, May 26 2024
    
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^6)(1-x^2)^2), {x, 0, 100}], x] (* Jinyuan Wang, Mar 15 2020 *)
  • PARI
    a(n) = polcoeff(1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^6)+x*O(x^n)), n);
    
  • Sage
    def A069183_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^6)) ).list()
    A069183_list(60) # G. C. Greubel, May 26 2024

Formula

G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)*(1-x^6)).
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-8) + a(n-9) + 2*a(n-10) + a(n-11) - 2*a(n-12) - a(n-13) + a(n-14). - Wesley Ivan Hurt, May 24 2024