cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069208 a(n) = Sum_{ d divides n } phi(n)/phi(d).

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 11, 10, 10, 11, 15, 13, 14, 15, 23, 17, 20, 19, 25, 21, 22, 23, 33, 26, 26, 31, 35, 29, 30, 31, 47, 33, 34, 35, 50, 37, 38, 39, 55, 41, 42, 43, 55, 50, 46, 47, 69, 50, 52, 51, 65, 53, 62, 55, 77, 57, 58, 59, 75, 61, 62, 70, 95, 65, 66, 67, 85, 69, 70, 71
Offset: 1

Views

Author

Vladeta Jovovic, Apr 10 2002

Keywords

Comments

a(n) = n iff n is squarefree number (cf. A005117).
Conjecture: Let (f(n)), n > 0, be a multiplicative sequence. Then holds:
(1) p(f; n) = Sum_{d powerful number (A001694) dividing n} f(d) is multiplicative;
(2) p(f; n) equals inverse Moebius transform of A112526(n) * f(n). - Werner Schulte, Jan 23 2025
a(n) is also the number of conjugacy classes of the holomorph of the cyclic group of order n. Corollary: Let Rn be the dihedral quandle of order n. Then a(n) is the number of isomorphism classes of virtual quandles whose underlying quandle is isomorphic to Rn. - Luc Ta, Jun 16 2025

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n]*Total[1/EulerPhi@Divisors@n], {n, 71}] (* Ivan Neretin, Sep 20 2017 *)
    f[p_, e_] := (p^(e + 1) - p^e + p^(e - 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 14 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n)/eulerphi(d)) \\ Michel Marcus, Jun 17 2013
    
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, (f[k,1]^(f[k,2]-1) + (f[k,1]-1)*f[k,1]^f[k,2]-1) / (f[k,1]-1)); \\ Daniel Suteu, Nov 04 2018

Formula

Multiplicative with a(p^e) = (p^(e+1)-p^e+p^(e-1)-1)/(p-1).
a(n) = phi(n) * Sum_{k=1..n} 1/phi(n / gcd(n, k))^2. - Daniel Suteu, Nov 04 2018
a(n) = Sum_{k=1..n, gcd(n,k) = 1} tau(gcd(n,k-1)). - Ilya Gutkovskiy, Sep 24 2021
From Werner Schulte, Feb 27 2022: (Start)
Dirichlet convolution of A005361 and A000010.
Dirichlet convolution of A112526 and A000027.
Dirichlet g.f.: Sum_{n>0} a(n) / n^s = zeta(s-1) * zeta(2*s) * zeta(3*s) / zeta(6*s). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 15015/(2764*Pi^2) = 0.550411... . - Amiram Eldar, Oct 22 2022
a(n) = Sum_{d powerful number (A001694) dividing n} n / d. - Werner Schulte, Jan 23 2025 (see Golomb link at A001694)