A069270 Third level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 2nd level is A069269).
1, 1, 1, 1, 2, 4, 1, 3, 9, 22, 1, 4, 15, 52, 140, 1, 5, 22, 91, 340, 969, 1, 6, 30, 140, 612, 2394, 7084, 1, 7, 39, 200, 969, 4389, 17710, 53820, 1, 8, 49, 272, 1425, 7084, 32890, 135720, 420732, 1, 9, 60, 357, 1995, 10626, 53820, 254475, 1068012, 3362260
Offset: 0
Examples
Rows start 1; 1, 1; 1, 2, 4; 1, 3, 9, 22; 1, 4, 15, 52, 140; etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
Crossrefs
Programs
-
Maple
A069270 := proc(n,k) binomial(n+3*k,k)*(n-k+1)/(n+2*k+1) ; end proc: # R. J. Mathar, Oct 11 2015
-
Mathematica
Table[Binomial[n + 3 k, k] (n - k + 1)/(n + 2 k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 27 2019 *)
Formula
T(n, k) = C(n+3k, k)*(n-k+1)/(n+2k+1).
For n >= k+3: T(n, k) = T(n-2, k+1)-T(n-3, k+1).
T(n, n) = T(n+2, n-1) = C(4n, n)/(3n+1).
Comments