A069278 17-almost primes (generalization of semiprimes).
131072, 196608, 294912, 327680, 442368, 458752, 491520, 663552, 688128, 720896, 737280, 819200, 851968, 995328, 1032192, 1081344, 1105920, 1114112, 1146880, 1228800, 1245184, 1277952, 1492992, 1507328, 1548288, 1605632, 1622016
Offset: 1
Keywords
Links
- D. W. Wilson, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Almost Prime.
Crossrefs
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), this sequence (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Programs
-
Mathematica
Select[Range[2*10^6],PrimeOmega[#]==17&] (* Harvey P. Dale, Sep 28 2016 *)
-
PARI
k=17; start=2^k; finish=2000000; v=[] for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A069278(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,17))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Aug 31 2024
Formula
Product p_i^e_i with Sum e_i = 17.
Comments