A069281 20-almost primes (generalization of semiprimes).
1048576, 1572864, 2359296, 2621440, 3538944, 3670016, 3932160, 5308416, 5505024, 5767168, 5898240, 6553600, 6815744, 7962624, 8257536, 8650752, 8847360, 8912896, 9175040, 9830400, 9961472, 10223616, 11943936, 12058624
Offset: 1
Keywords
Links
- D. W. Wilson, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Almost Prime.
Crossrefs
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), this sequence (r = 20). - Jason Kimberley, Oct 02 2011
Programs
-
Mathematica
Select[Range[2*9!,5*10! ],Plus@@Last/@FactorInteger[ # ]==20 &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)
-
PARI
k=20; start=2^k; finish=15000000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v \\ Depending upon the size of k and how many terms are needed, a much more efficient algorithm than the brute-force method above may be desirable. See additional comments in this section of A069280.
-
Python
from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A069281(n): def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,20))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
Product p_i^e_i with Sum e_i = 20.
a(n) = A078840(20,n). - R. J. Mathar, Jan 30 2019
Comments