cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069291 Number of square divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

Terms 1, 2, 3, ... occurs for the first time at 1, 16, 108, 288, 1296, 3600, 10368, 14400, ... - Antti Karttunen, Nov 20 2017

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, And[IntegerQ@ Sqrt@ #, # <= Sqrt@ n] &], {n, 120}] (* Michael De Vlieger, Nov 20 2017 *)
  • PARI
    A069291(n) = sumdiv(n, d, (issquare(d)&&((d^2)<=n))); \\ Antti Karttunen, Nov 20 2017

Formula

G.f.: Sum_{k>=1} x^(k^4) / (1 - x^(k^2)). - Ilya Gutkovskiy, Apr 04 2020

Extensions

More terms from Antti Karttunen, Nov 20 2017