A069325 Number of 3 X n binary arrays with path of adjacent 1's from upper right corner to lower left corner.
1, 8, 51, 295, 1632, 8830, 47239, 251261, 1332456, 7055228, 37327007, 197404203, 1043751584, 5518106750, 29171471659, 154210451661, 815197197636, 4309313949364, 22779900825195, 120418887728947
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..1383
- Index entries for linear recurrences with constant coefficients, signature (9,-21,3,24,-8,-4,4).
Crossrefs
Row 3 of A359575.
Cf. 2 X n A048739, 4 X n A069326, 5 X n A069327, 6 X n A069328, 7 X n A069329, 8 X n A069330, 9 X n A069331, 10 X n A069332, 11 X n A069333, 12 X n A069334, 13 X n A069335, 14 X n A069336, 15 X n A069337, 16 X n A069338, 17 X n A069339, 18 X n A069340, 19 X n A069341, 20 X n A069342, n X n A069343, n X n symmetric A069344.
Programs
-
Magma
m:=25; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x+x^3)/((1-2*x-2*x^2)*(2*x^5-4*x^4+x^3+9*x^2-7*x+1)))); // G. C. Greubel, Apr 22 2018 -
Mathematica
CoefficientList[Series[x*(1-x+x^3)/((1-2*x-2*x^2)*(2*x^5-4*x^4+x^3+9*x^2 -7*x+1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 22 2018 *) LinearRecurrence[{9,-21,3,24,-8,-4,4},{1,8,51,295,1632,8830,47239},20] (* Harvey P. Dale, May 21 2023 *)
-
PARI
Vec(-x*(1-x+x^3)/(2*x^2+2*x-1)/(2*x^5-4*x^4+x^3+9*x^2-7*x+1) + O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
Formula
G.f.: x*(1-x+x^3)/((1-2*x-2*x^2)*(2*x^5-4*x^4+x^3+9*x^2-7*x+1)). - Vladeta Jovovic, Jul 02 2003