cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069489 Primes > 1000 in which every substring of length 3 is also prime.

Original entry on oeis.org

1013, 1019, 1031, 1097, 1277, 1373, 1499, 1571, 1733, 1811, 1997, 2113, 2239, 2293, 2719, 3079, 3137, 3313, 3373, 3491, 3499, 3593, 3673, 3677, 3733, 3739, 3797, 4013, 4019, 4211, 4337, 4397, 4673, 4877, 4919, 5233, 5419, 5479, 6011, 6073, 6079, 6131
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

Minimum number of digits is taken to be 4 as all 3-digit primes would be trivial members.
Zero may occur only as second digit from left. - Zak Seidov, Dec 28 2020
All the digits after the two first digits from left are necessarily odd. - Bernard Schott, Mar 20 2022

Examples

			11317 is a term as the three substrings of length 3 i.e. 113,131 and 317 all are primes.
		

Crossrefs

Programs

  • Haskell
    a069489 n = a069489_list !! (n-1)
    a069489_list = filter g $ dropWhile (<= 1000) a000040_list where
       g x = x < 100 || a010051 (x `mod` 1000) == 1 && g (x `div` 10)
    -- Reinhard Zumkeller, Apr 07 2014
  • Mathematica
    Do[ If[ Union[ PrimeQ[ Map[ FromDigits, Partition[ IntegerDigits[ Prime[n]], 3, 1]]]] == {True}, Print[ Prime[n]]], {n, PrimePi[1000] + 1, 10^3}]
    Select[Prime[Range[169,800]],AllTrue[FromDigits/@Partition[ IntegerDigits[ #],3,1], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 05 2019 *)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Apr 12 2002