cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A258602 a(n) is the index m such that A069492(m) = prime(n)^5.

Original entry on oeis.org

2, 5, 12, 20, 37, 45, 68, 82, 106, 142, 154, 196, 219, 234, 260, 305, 342, 360, 407, 434, 451, 496, 528, 573, 635, 668, 681, 720, 737, 770, 885, 919, 966, 984, 1065, 1087, 1139, 1193, 1228, 1283, 1331, 1348, 1440, 1455, 1484, 1509, 1624, 1731, 1767, 1789
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Comments

A069492(a(n)) = A050997(n) = prime(n)^5;
A069492(m) mod prime(n) > 0 for m < a(n);
also smallest number m such that A258570(m) = prime(n):
A258570(a(n)) = A000040(n) and A258570(m) != A000040(n) for m < a(n).

Examples

			.   n |  p |  a(n) | A069492(a(n)) = A050997(n) = p^5
. ----+----+-------+---------------------------------
.   1 |  2 |     2 |            32
.   2 |  3 |     5 |           243
.   3 |  5 |    12 |          3125
.   4 |  7 |    20 |         16807
.   5 | 11 |    37 |        161051
.   6 | 13 |    45 |        371293
.   7 | 17 |    68 |       1419857
.   8 | 19 |    82 |       2476099
.   9 | 23 |   106 |       6436343
.  10 | 29 |   142 |      20511149
.  11 | 31 |   154 |      28629151
.  12 | 37 |   196 |      69343957
.  13 | 41 |   219 |     115856201
.  14 | 43 |   234 |     147008443
.  15 | 47 |   260 |     229345007
.  16 | 53 |   305 |     418195493
.  17 | 59 |   342 |     714924299
.  18 | 61 |   360 |     844596301
.  19 | 67 |   407 |    1350125107
.  20 | 71 |   434 |    1804229351
.  21 | 73 |   451 |    2073071593
.  22 | 79 |   496 |    3077056399
.  23 | 83 |   528 |    3939040643
.  24 | 89 |   573 |    5584059449
.  25 | 97 |   635 |    8587340257  .
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a258602 = (+ 1) . fromJust . (`elemIndex` a258570_list) . a000040
    
  • PARI
    \\ Gen(limit,k) defined in A036967.
    a(n)=#Gen(prime(n)^5,5) \\ Andrew Howroyd, Sep 10 2024
  • Python
    from math import gcd
    from sympy import prime, integer_nthroot, factorint
    def A258602(n):
        c, m = 0, prime(n)**5
        for t in range(1,integer_nthroot(m,9)[0]+1):
            if all(d<=1 for d in factorint(t).values()):
                for u in range(1,integer_nthroot(s:=m//t**9,8)[0]+1):
                    if gcd(t,u)==1 and all(d<=1 for d in factorint(u).values()):
                        for w in range(1,integer_nthroot(a:=s//u**8,7)[0]+1):
                            if gcd(u,w)==1 and gcd(t,w)==1 and all(d<=1 for d in factorint(w).values()):
                                for y in range(1,integer_nthroot(z:=a//w**7,6)[0]+1):
                                    if gcd(w,y)==1 and gcd(u,y)==1 and gcd(t,y)==1 and all(d<=1 for d in factorint(y).values()):
                                        c += integer_nthroot(z//y**6,5)[0]
        return c # Chai Wah Wu, Sep 10 2024
    

Extensions

a(11) onwards corrected by Chai Wah Wu and Andrew Howroyd, Sep 10 2024

A360842 5-full numbers (A069492) sandwiched between twin primes.

Original entry on oeis.org

139968, 995328, 63700992, 4076863488, 17714700000, 82012500000, 98802571392, 174960000000, 445240556352, 641194278912, 889223142528, 1059917571072, 1594323000000, 1663012435968, 2348273369088, 3333709317312, 5717741400000, 16260080320512, 19144761127488, 28697814000000
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Examples

			139968 = 2^6 * 3^7 is a term since it is 5-full and 139967 and 139969 are twin primes.
		

Crossrefs

Intersection of A014574 and A069492.
Subsequence of A113839, A360840 and A360841.

Programs

  • Mathematica
    Select[6*Range[2*10^5], PrimeQ[# - 1] && PrimeQ[# + 1] && Min[FactorInteger[#][[;; , 2]]] > 4 &]
  • PARI
    is(n) = isprime(n-1) && isprime(n+1) && vecmin(factor(n)[,2]) > 4;

A258570 Smallest prime factors of 5-full numbers, a(1)=1.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 5, 2, 3, 2, 2, 2, 5, 2, 7, 3, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 7, 2, 2, 2, 11, 3, 2, 2, 2, 2, 2, 2, 13, 2, 5, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 7, 2, 2, 2, 2, 2, 2, 2, 17, 2, 3, 2, 2, 11, 2, 5, 2, 2, 2, 2, 2, 3, 19, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258570 = a020639 . a069492
    
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 4, print1(f[1, 1], ", "))); } \\ Amiram Eldar, Sep 12 2024

Formula

a(n) = A020639(A069492(n)).
a(A258602(n)) = A000040(n) and a(m) != A000040(n) for m < A258602(n).

A358250 Numbers whose square has a number of divisors coprime to 210.

Original entry on oeis.org

1, 32, 64, 243, 256, 512, 729, 2048, 3125, 6561, 7776, 15552, 15625, 16384, 16807, 19683, 23328, 32768, 46656, 62208, 100000, 117649, 124416, 161051, 177147, 186624, 200000, 209952, 262144, 371293, 373248, 390625, 419904, 497664, 500000, 537824, 629856, 759375
Offset: 1

Views

Author

Michael De Vlieger, Dec 03 2022

Keywords

Comments

210 is the product of the smallest 4 primes.
Numbers k such that gcd(d(k^2), 210) = 1, where d(k) is the number of divisors of k (A000005).
Also numbers with no exponents = 1 mod 3, 2 mod 5, or 3 mod 7; also numbers whose square has a number of divisors coprime to 105. - Charles R Greathouse IV, Dec 08 2022

Crossrefs

Subsequence of A069492 and hence of A036967, A036966, and A001694.
Subsequence of other sequences of numbers k such that gcd(d(k^2), m) = 1: A350014 (m=6), A354179 (m=30).

Programs

  • Mathematica
    With[{nn = 2^20}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], CoprimeQ[DivisorSigma[0, #^2], 210] &]]
  • PARI
    is(n,f=factor(n))=if(n<32, return(n==1)); my(t=f[,2]%105, N=19200959813818273241621521446046); for(i=1,#t, if(bittest(N,t[i]), return(0))); 1 \\ Charles R Greathouse IV, Dec 08 2022

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (Sum_{k=2..210, gcd(k-1,210)=1} p^(k/2))/(p^105-1) = 1.05981355805... . - Amiram Eldar, Dec 06 2022

A360844 a(n) is the least k-full number that is sandwiched between twin primes.

Original entry on oeis.org

4, 432, 2592, 139968, 139968, 174960000000, 56358560858112, 84537841287168, 578415690713088, 578415690713088, 1141260857376768, 61628086298345472, 61628086298345472, 61628086298345472, 322850407500000000000000000000, 322850407500000000000000000000, 62518864539857068333550694039552
Offset: 2

Views

Author

Amiram Eldar, Feb 23 2023

Keywords

Comments

k-full number is a number m such that if a prime p divides m then so does p^k. All the exponents in the canonical prime factorization of a k-full number are not smaller than k.
a(2)-a(15) are the terms below 3*10^19. Except for a(7) = 174960000000, they are all 3-smooth numbers (A003586, and thus they are terms of A027856). Are there other terms that are not 3-smooth?
a(168) = 2^176 * 3^173 * 7^168 is the first term that is not 5-smooth. - Bert Dobbelaere, Feb 24 2023

Examples

			The first 3 terms, their factorizations and the corresponding twin primes are:
  n |   a(n)  prime factorization  A051904(a(n))  {a(n)-1, a(n)+1}
  ----------------------------------------------------------------
  2 |     4                  2^2              2             {3, 5}
  3 |   432            2^4 * 3^3              3         {431, 433}
  4 |  2592            2^5 * 3^4              4       {2591, 2593}
		

Crossrefs

Extensions

More terms from Bert Dobbelaere, Feb 24 2023

A369306 The number of cubefree divisors d of n such that n/d is also cubefree.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 1, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 0, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 2, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 0, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 19 2024

Keywords

Comments

The analogous sequence with squarefree divisors (the number of squarefree divisors d of n such that n/d is also squarefree) is abs(A007427(n)).

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := Switch[e, 1, 2, 2, 3, 3, 2, 4, 1, , 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> [2, 3, 2, 1, 0][min(x, 5)], factor(n)[,2]));

Formula

Multiplicative with a(p) = 2, a(p^2) = 3, a(p^3) = 2, a(p^4) = 1, and a(p^e) = 0 for e >= 5.
a(n) >= 0, with equality if and only if n is a 5-full number (A069492) larger than 1.
a(n) = 1 if and only if n is the 4th power of a squarefree number (A005117).
a(n) <= A000005(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s)^2/zeta(3*s)^2.
Sum_{k=1..n} a(k) ~ (n/zeta(3)^2) * (log(n) + 2*gamma - 1 - 6*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).
Showing 1-6 of 6 results.