cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069493 6-full numbers: if p divides n then so does p^6.

Original entry on oeis.org

1, 64, 128, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 46656, 59049, 65536, 78125, 93312, 117649, 131072, 139968, 177147, 186624, 262144, 279936, 373248, 390625, 419904, 524288, 531441, 559872, 746496, 823543, 839808
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258603(n); a(A258600(n)) = A030516(n) = prime(n)^6. - Reinhard Zumkeller, Jun 06 2015

Examples

			2^7*3^6 = 93312 is a member (although not of A076470).
		

Crossrefs

Cf. A036967, A036966, A001694. Different from A076470.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a069493 n = a069493_list !! (n-1)
    a069493_list = 1 : f (singleton z) [1, z] zs where
       f s q6s p6s'@(p6:p6s)
         | m < p6 = m : f (union (fromList $ map (* m) ps) s') q6s p6s'
         | otherwise = f (union (fromList $ map (* p6) q6s) s) (p6:q6s) p6s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030516_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • Mathematica
    Join[{1},Select[Range[900000],Min[FactorInteger[#][[All,2]]]>5&]] (* Harvey P. Dale, Mar 03 2018 *)
  • PARI
    for(n=1,560000,if(n*sumdiv(n,d,isprime(d)/d^6)==floor(n*sumdiv(n,d,isprime(d)/d^6)),print1(n,",")))
    
  • Python
    from math import gcd
    from sympy import factorint, integer_nthroot
    def A069493(n):
        def f(x):
            c = n+x
            for y1 in range(1,integer_nthroot(x,11)[0]+1):
                if all(d<=1 for d in factorint(y1).values()):
                    for y2 in range(1,integer_nthroot(z2:=x//y1**11,10)[0]+1):
                        if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                            for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                                if gcd(y3,y1)==1 and gcd(y3,y2)==1 and all(d<=1 for d in factorint(y3).values()):
                                    for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                        if gcd(y4,y1)==1 and gcd(y4,y2)==1 and gcd(y4,y3)==1 and all(d<=1 for d in factorint(y4).values()):
                                            for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                                if gcd(y5,y1)==1 and gcd(y5,y2)==1 and gcd(y5,y3)==1 and gcd(y5,y4)==1 and all(d<=1 for d in factorint(y5).values()):
                                                    c -= integer_nthroot(z5//y5**7,6)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^5*(p-1))) = 1.0334657852594050612296726462481884631303137561267151463866539131591664... - Amiram Eldar, Jul 09 2020