A069495 Squares which are the arithmetic mean of two consecutive primes.
4, 9, 64, 81, 144, 225, 324, 441, 625, 1089, 1681, 2601, 3600, 4096, 5184, 6084, 8464, 12544, 13689, 16641, 19044, 19600, 25281, 27225, 28224, 29584, 36864, 38025, 39204, 45369, 46656, 47524, 51984, 56169, 74529, 87025, 88804, 91809, 92416, 95481, 103684
Offset: 1
Keywords
Examples
144 = (139 + 149)/2 is a member.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Programs
-
Maple
a:= proc(n) option remember; local k, kk, p, q; for k from 1 +`if`(n=1, 1, iroot(a(n-1), 2)) do kk:= k^2; p, q:= prevprime(kk), nextprime(kk); if (p+q)/2=kk then return kk fi od end: seq(a(n), n=1..60); # Alois P. Heinz, Dec 21 2013
-
Mathematica
p = -1; Do[q = Prime[n]; If[ IntegerQ[ Sqrt[(p + q)/2]], Print[(p + q)/2]]; p = q, {n, 1, 10000} ] Select[Mean/@Partition[Prime[Range[11000]],2,1],IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, Jan 23 2019 *)
Formula
a(n) = (A075190(n))^2. - Zak Seidov
Extensions
Edited and extended by Robert G. Wilson v, Apr 01 2002