cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061426 Geometric mean of the digits = 2. In other words, the product of the digits is = 2^k where k is the number of digits.

Original entry on oeis.org

2, 14, 22, 41, 118, 124, 142, 181, 214, 222, 241, 412, 421, 811, 1128, 1144, 1182, 1218, 1224, 1242, 1281, 1414, 1422, 1441, 1812, 1821, 2118, 2124, 2142, 2181, 2214, 2222, 2241, 2412, 2421, 2811, 4114, 4122, 4141, 4212, 4221, 4411, 8112, 8121, 8211
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			124 is a term as the geometric mean of digits is (1*2*4) = 8 = 2^3.
		

Crossrefs

Cf. A061427-A061430. A069512 gives another version.
Cf. A028846.

Programs

  • Haskell
    a061426 n = a061426_list !! (n-1)
    a061426_list = g [1] where
       g ds = if product ds == 2 ^ length ds
              then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds)
       s [] = [1]; s (8:ds) = 1 : s ds; s (d:ds) = 2*d : ds
    -- Reinhard Zumkeller, Jan 13 2014

Extensions

More terms from Erich Friedman, May 08 2001

A069518 Geometric mean of digits = 4 and digits are in nondecreasing order.

Original entry on oeis.org

4, 28, 44, 188, 248, 444, 1488, 2288, 2448, 4444, 12888, 14488, 22488, 24448, 44444, 118888, 124888, 144488, 222888, 224488, 244448, 444444, 1148888, 1228888, 1244888, 1444488, 2224888, 2244488, 2444448, 4444444, 11288888, 11448888, 12248888, 12444888
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

No number is obtainable by permuting the digits of other members - only one with ascending order of digits is included.

Examples

			1488 is a term but 1848 is not.
		

Crossrefs

Programs

  • Mathematica
    a = {}; b = 4; Do[c = Apply[ Times, IntegerDigits[n]]/b^Floor[ Log[10, n] + 1]; If[c == 1 && Position[a, FromDigits[ Sort[ IntegerDigits[n]]]] == {}, Print[n]; a = Append[a, n]], {n, 1, 10^7}]
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_combinations
    def auptod(terms):
      n, digits, alst, powsexps2 = 0, 1, [], [(1, 0), (2, 1), (4, 2), (8, 3)]
      while n < terms:
        target = 4**digits
        mcstr = "".join(str(d)*(digits//max(1, r//2)) for d, r in powsexps2)
        for mc in multiset_combinations(mcstr, digits):
          if prod(map(int, mc)) == target:
            n += 1
            alst.append(int("".join(mc)))
            if n == terms: break
        else: digits += 1
      return alst
    print(auptod(34)) # Michael S. Branicky, Apr 28 2021

Extensions

Edited and extended by Robert G. Wilson v, Apr 01 2002
Name edited and a(31) and beyond from Michael S. Branicky, Apr 28 2021

A069516 Geometric mean of digits = 3 and digits are in nondecreasing order.

Original entry on oeis.org

3, 19, 33, 139, 333, 1199, 1339, 3333, 11399, 13339, 33333, 111999, 113399, 133339, 333333, 1113999, 1133399, 1333339, 3333333, 11119999, 11133999, 11333399, 13333339, 33333333, 111139999, 111333999, 113333399, 133333339, 333333333, 1111199999, 1111339999
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

No number is obtainable by permuting the digits of other members - only one with ascending order of digits is included.

Examples

			1339 belongs to this sequence but 1933 does not.
		

Crossrefs

Programs

  • Mathematica
    a = {}; b = 3; Do[c = Apply[ Times, IntegerDigits[n]]/b^Floor[ Log[10, n] + 1]; If[c == 1 && Position[a, FromDigits[ Sort[ IntegerDigits[n]]]] == {}, Print[n]; a = Append[a, n]], {n, 1, 10^8}]
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_combinations
    def aupton(terms):
      n, digits, alst, powsexps3 = 0, 1, [], [(1, 0), (3, 1), (9, 2)]
      while n < terms:
        target = 3**digits
        mcstr = "".join(str(d)*(digits//max(1, r)) for d, r in powsexps3)
        for mc in multiset_combinations(mcstr, digits):
          if prod(map(int, mc)) == target:
            n += 1
            alst.append(int("".join(mc)))
            if n == terms: break
        else: digits += 1
      return alst
    print(aupton(31)) # Michael S. Branicky, Apr 28 2021

Extensions

Edited and extended by Robert G. Wilson v, Apr 01 2002
Name edited and a(30) and beyond from Michael S. Branicky, Apr 28 2021
Showing 1-3 of 3 results.