A061426 Geometric mean of the digits = 2. In other words, the product of the digits is = 2^k where k is the number of digits.
2, 14, 22, 41, 118, 124, 142, 181, 214, 222, 241, 412, 421, 811, 1128, 1144, 1182, 1218, 1224, 1242, 1281, 1414, 1422, 1441, 1812, 1821, 2118, 2124, 2142, 2181, 2214, 2222, 2241, 2412, 2421, 2811, 4114, 4122, 4141, 4212, 4221, 4411, 8112, 8121, 8211
Offset: 1
Examples
124 is a term as the geometric mean of digits is (1*2*4) = 8 = 2^3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a061426 n = a061426_list !! (n-1) a061426_list = g [1] where g ds = if product ds == 2 ^ length ds then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds) s [] = [1]; s (8:ds) = 1 : s ds; s (d:ds) = 2*d : ds -- Reinhard Zumkeller, Jan 13 2014
Extensions
More terms from Erich Friedman, May 08 2001
Comments