cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069546 a(n) = Sum_{d|n} sigma(n*d).

Original entry on oeis.org

1, 10, 17, 53, 37, 170, 65, 236, 174, 370, 145, 901, 197, 650, 629, 987, 325, 1740, 401, 1961, 1105, 1450, 577, 4012, 968, 1970, 1618, 3445, 901, 6290, 1025, 4026, 2465, 3250, 2405, 9222, 1445, 4010, 3349, 8732, 1765, 11050, 1937, 7685, 6438, 5770
Offset: 1

Views

Author

Vladeta Jovovic, Apr 17 2002

Keywords

Crossrefs

Programs

  • Magma
    [&+[DivisorSigma(1,n*d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Sep 15 2019
    
  • Mathematica
    Table[ Apply[ Plus, DivisorSigma[1, n*Divisors[n]]], {n, 1, 50}]
    f[p_, e_] := (p^(e + 1)*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 28 2022 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(n*d)); \\ Michel Marcus, Sep 15 2019

Formula

Multiplicative with a(p^e) = (p^(e+1)*(p^(e+1)-1)-(p-1)*(e+1))/(p-1)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = ((zeta(2)*zeta(3)^2)/3) * Product_{p prime} (1 + 1/p^2 - 1/p^4 - 1/p^5) = 1.09461730308... . - Amiram Eldar, Oct 28 2022

Extensions

Edited and extended by Robert G. Wilson v, Apr 22 2002