cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069742 Duplicate of A069743.

Original entry on oeis.org

1, 1, 1, 169, 57122, 1130708969104, 60520841316555286464512
Offset: 1

Views

Author

Keywords

A379913 Let M_n be the n X n matrix M_(i,j)=1/(3^i+3^j), then a(n) is the denominator of det(M_n).

Original entry on oeis.org

6, 432, 145800, 28934010000, 36195844320916875, 8087414520398390420149816875, 14739121497834560950873288612087606246265625, 24111787175394014554749263306909156210251310885835206605812890625, 30311902674167553291682092445492621447523310843996437232420613554400185533411542126171875
Offset: 1

Views

Author

Robert Israel, Jan 06 2025

Keywords

Examples

			For n = 3, the determinant of the matrix [1/6, 1/12, 1/30; 1/12, 1/18, 1/36; 1/30, 1/36, 1/54] is 1/145800, so a(3) = 145800.
		

Crossrefs

Numerators are A069743.

Programs

  • Maple
    g:= proc(n) local M;
      M:= Matrix(n,n,(i,j) -> 1/(3^i+3^j));
      denom(LinearAlgebra:-Determinant(M))
    end proc:
    map(g, [$1..10]);
  • PARI
    a(n) = denominator(matdet(matrix(n, n, i, j, 1/(3^i+3^j)))); \\ Michel Marcus, Jan 06 2025

A069741 Let M_n be the n X n matrix M_(i,j)=1/(2^i+2^j), then a(n) is the numerator of det(M_n).

Original entry on oeis.org

1, 1, 1, 49, 2401, 113060689, 260871824431729, 9708455965188246321478801, 361304320362377236050632364626862769, 3511057522394397982450601057907077808699210592028881
Offset: 1

Views

Author

Benoit Cloitre, Apr 21 2002

Keywords

Comments

a(n) seems always to be a square and 7 seems to follow a rule in a(n) factorization. Maximal k such that 7^k divides a(n) are 0, 0, 0, 2, 4, 6, 10, 14, 18, 24, 30, 36, 44, 52, 60, 70, 80, 90, 102, 114, 126, 142, 158, 174, 192... Hence if b(n)=maximum exponent of 7 in factorization of a(n), b(3n+1)=A049450(n); b(3n+2)=A049450(n)+2*n; b(3n+3)=A049450(n)+4n

Crossrefs

Cf. A069743.

Programs

  • PARI
    for(n=1,70,print1(numerator(matdet(matrix(n,n,i,j,1/(2^i+2^j)))),","))
Showing 1-3 of 3 results.