cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A069784 Numbers m such that gcd(d((m!)^3), d(m!)) = 2^k, i.e., is a power of 2; d = A000005.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 18, 19, 30, 31, 32, 35, 38, 39
Offset: 1

Views

Author

Labos Elemer, Apr 08 2002

Keywords

Comments

From David A. Corneth, Jul 31 2017: (Start)
Theorem: There are no further terms.
Proof:
Let e_n(n, p) be the exponent of p in n!. The prime p has exponent e_(n, p) = n/p for sqrt(n) < p < n in n!. n/4 <= p < n/3, e_(n, p) = 3 so e_(n, p) * 3 = 9. and for n/5 <= p < n/4, e = 4. The gap g_n between prime(n) and prime(n+1) is about sqrt(n) * log(n). There is a gap of n/4 - n/5 = n/20 between n/5 and n/4. primepi(1000) = 168, so for n > 5*1000, the gap between n/5 and the next prime is about sqrt(168) * log(168) ~= 66. This is much less than n/20. No 40 <= m <= 15000 is in the sequence, which completes the proof. (End)

Crossrefs

Programs

  • Mathematica
    Do[s=GCD[DivisorSigma[0, (n!)^3], DivisorSigma[0, n! ]]; If[IntegerQ[n/100], Print[{n}]]; If[IntegerQ[Log[2, s]], Print[n]], {n, 1, 10000}]
  • PARI
    val(n, p) = my(r=0); while(n, r+=n\=p);r
    is(n) = {my(p1 = p2 = 1); forprime(p=2, n, v = val(n, p); p1 *= (v + 1); p2 *= (3*v + 1)); g = gcd(p1, p2); g==2^(valuation(g, 2))} \\ David A. Corneth, Jul 31 2017

Extensions

Keywords fini and full added by David A. Corneth, Jul 31 2017

A069785 a(n) = A061680(n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 15, 15, 3, 5, 135, 135, 99, 99, 9, 63, 21, 21, 459, 459, 135, 19, 15, 15, 15, 21, 189, 189, 585, 585, 18225, 18225, 675, 15, 135, 891, 8505, 25515, 81, 81, 7695, 7695, 1575, 1575, 4725, 6615, 40635, 40635, 945, 1215, 3645, 3645, 151875, 151875
Offset: 1

Views

Author

Labos Elemer, Apr 09 2002

Keywords

Examples

			Observe cases when consecutive terms are equal: n={1,2,3,4,6,10,...,78,80,82,88,96}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n!][[;;, 2]]}, GCD[Times @@ (2*e+1), Times @@ (e+1)]]; Array[a, 100] (* Amiram Eldar, Dec 02 2023 *)
  • PARI
    a(n) = {my(e = factor(n!)[,2]); gcd(vecprod(apply(x -> 2*x+1, e)), vecprod(apply(x -> x+1, e)));} \\ Amiram Eldar, Dec 02 2023

Formula

a(n) = A061680(A000142(n)). - Amiram Eldar, Dec 02 2023
Showing 1-2 of 2 results.