A069784 Numbers m such that gcd(d((m!)^3), d(m!)) = 2^k, i.e., is a power of 2; d = A000005.
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 18, 19, 30, 31, 32, 35, 38, 39
Offset: 1
Programs
-
Mathematica
Do[s=GCD[DivisorSigma[0, (n!)^3], DivisorSigma[0, n! ]]; If[IntegerQ[n/100], Print[{n}]]; If[IntegerQ[Log[2, s]], Print[n]], {n, 1, 10000}]
-
PARI
val(n, p) = my(r=0); while(n, r+=n\=p);r is(n) = {my(p1 = p2 = 1); forprime(p=2, n, v = val(n, p); p1 *= (v + 1); p2 *= (3*v + 1)); g = gcd(p1, p2); g==2^(valuation(g, 2))} \\ David A. Corneth, Jul 31 2017
Extensions
Keywords fini and full added by David A. Corneth, Jul 31 2017
Comments