cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A098831 a(n) = A069837(n) - (10^n-1)*2/9.

Original entry on oeis.org

0, 1, 1, 15, 51, 101, 51, 1, 5, 155, 1, 1051, 51, 105, 5, 311, 1335, 355, 105, 31, 55, 51, 105, 1031, 15, 105, 55, 5, 355, 115, 1001, 3115, 35, 551, 331, 1, 305, 51, 3305, 555, 1111, 305, 135, 1131, 1135, 1505, 51, 31, 10355, 5001, 1001, 1335, 1101, 331, 305
Offset: 1

Views

Author

David Wasserman, Nov 02 2004

Keywords

Comments

This is a way to compress A069837.

Crossrefs

Cf. A069837.

Programs

  • PARI
    foo(n) = local(m); if (n < 4, m = q[n + 1], m = q[n%4 + 1] + 10*foo(n\4)); m;
    print1(0, ", "); q = [0, 1, 3, 5]; for (n = 2, 70, x = (10^n - 1)*2/9; i = 1; found = 0; while (!found, m = foo(i); if (isprime(x + m), found = 1; print1(m, ", "), i += 2)));

A374376 Array read by downward antidiagonals: T(k,n) is the least number that has k prime factors (counted with multiplicity) and is the concatenation of n primes, or -1 if there is no such number.

Original entry on oeis.org

2, 23, -1, 223, 22, -1, 2237, 235, 27, -1, 22273, 2227, 222, 132, -1, 222323, 22223, 2222, 225, 32, -1, 2222273, 222223, 22222, 2223, 252, 729, -1, 22222223, 2222557, 222227, 22225, 2322, 352, 192, -1, 222222227, 22222237, 2222222, 222225, 22232, 2232, 2352, 2112, -1, 2222222377, 222222223
Offset: 1

Views

Author

Robert Israel, Jul 14 2024

Keywords

Examples

			Array starts
  2  23   223   2237   22273  ...
 -1  22   235   2227   22223  ...
 -1  27   222   2222   22222  ...
 -1 132   225   2223   22225  ...
 -1  32   252   2322   22232  ...
A(4,3) = 225 because 225 = 3^2 * 5^2 is the product of 4 primes (with multiplicity) and is the concatenation of the 3 primes 2, 2 and 5, and is the least number that works.
		

References

  • T(k,1) = -1 for k > 1.

Crossrefs

Cf. A001222, A069837 (first row), A374665 (main diagonal), A374669 (second column).

Programs

  • Maple
    PD[1]:= [2,3,5,7]:
    for i from 2 to 7 do PD[i]:= select(isprime,[seq(i,i=10^(i-1)+1..10^i-1,2)]) od:
    dcat:= proc(a,b) 10^(ilog10(b)+1)*a+b end proc:
    cp:= proc(m,n) option remember; local d,p,x,R;
      if n = 1 then return PD[m] fi;
      R:= {};
      for d from 1 to m-n+1 do
        R:= R union {seq(seq(dcat(p,x),p=PD[d]),x=procname(m-d,n-1))}
      od;
      R
    end proc:
    F:= proc(n,N)
    local V,count,d,x,v;
    if n = 1 then return <2,(-1)$(N-1)> fi;
    V:= Vector(N); count:= 0;
    for d from n while count < N do
      for x in sort(convert(cp(d,n),list)) while count < N do
        v:= numtheory:-bigomega(x);
        if v <= N and V[v] = 0 then
          V[v]:= x; count:= count+1;
        fi
    od od:
    V;
    end proc:
    N:= 10: M:= Matrix(N,N):
    for i from 1 to N do
      V:= F(i,N+1-i);
      M[i,1..N+1-i]:= V;
    od:
    [seq(seq(M[t-i,i],i=1..t-1),t=2..N+1)];

A071060 Largest n-digit prime with only prime digits.

Original entry on oeis.org

7, 73, 773, 7757, 77773, 777737, 7777753, 77777377, 777777773, 7777777577, 77777777573, 777777777773, 7777777777573, 77777777777753, 777777777777773, 7777777777777753, 77777777777775557, 777777777777777737, 7777777777777777577, 77777777777777777257, 777777777777777777773, 7777777777777777773533, 77777777777777777775353
Offset: 1

Views

Author

Rick L. Shepherd, May 26 2002

Keywords

Comments

Terms a(5) through a(23) have been certified prime with Primo.

Crossrefs

Cf. A069837.

Programs

  • PARI
    genit(nstrt=1,cownt=23)={my(arr=List());for(n=nstrt, nstrt+cownt, my(cand=0); for(i=1,n,cand=10*cand+7); if(ispseudoprime(cand)==1, listput(arr,cand);next); for(j=1,+oo,cand=precprime(cand-1); my(v=digits(cand), pass=1); for(ptr=1, #v, my(q=v[ptr]); if(q==2||q==3||q==5||q==7,next);pass=0;break);if(pass>0,break)); listput(arr,cand)); Vec(arr)} \\ Bill McEachen, Apr 29 2023
  • Python
    from sympy import isprime
    from itertools import product
    def a(n): return next(t for t in (int("".join(p)+e) for p in product("7532", repeat=n-1) for e in "73") if isprime(t))
    print([a(n) for n in range(1, 24)]) # Michael S. Branicky, Apr 29 2023
    

Formula

Conjecture: a(n) ~ floor((7/9) * 10^n). - Bill McEachen, Apr 07 2023

A083470 Smallest prime which is the concatenation of n distinct primes in increasing order.

Original entry on oeis.org

2, 23, 257, 2357, 235723, 23571143, 2357111371, 235711131767, 23571113172367, 2357111317192343, 235711131719233171, 23571113171923296797, 2357111317192329314189, 235711131719232931375979, 23571113171923293137414371, 2357111317192329313741436167
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 02 2003

Keywords

Comments

Perhaps the n-th term begins with the concatenation of the first (n-1) primes, except for n = 3.
The 9th, 11th, 12th, 13th, .... terms are other counterexamples to the above "conjecture". On the other hand, it seems almost sure that the n-th term starts with the concatenation of the first (n-2) primes. - M. F. Hasler, Mar 20 2011

Crossrefs

Extensions

More terms from David Wasserman, Nov 02 2004
Showing 1-4 of 4 results.