A069872 Numbers k such that k divides the concatenation all divisors in ascending order, i.e., k divides A037278(k).
1, 2, 4, 5, 6, 8, 10, 15, 16, 20, 24, 25, 30, 32, 40, 50, 60, 64, 80, 90, 96, 100, 104, 120, 124, 125, 128, 150, 160, 200, 240, 250, 255, 256, 288, 320, 360, 375, 380, 384, 400, 425, 464, 480, 495, 500, 512, 600, 618, 625, 640, 750, 795, 800, 864, 875, 960, 1000
Offset: 1
Examples
16 is a term as 16 divides 124816, 24 is a term as 24 divides 1234681224.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1547 (terms <= 10^10, first 500 terms from Harvey P. Dale)
Programs
-
Magma
k:=1; sol:=[]; for u in [1..1000] do D:=Divisors(u); conc:=D[1]; for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]);conc:=10^a1*conc+D[u1];end for; if conc mod u eq 0 then sol[k]:=u; k:=k+1; end if; end for; sol; // Marius A. Burtea, Jun 01 2019
-
Mathematica
Select[Range[1000],Divisible[FromDigits[Flatten[IntegerDigits/@ Divisors[ #]]],#]&] (* Harvey P. Dale, Dec 31 2012 *)
-
PARI
f(n) = my(d=divisors(n), s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ A037278 isok(n) = f(n) % n == 0; \\ Michel Marcus, Jun 01 2019
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003
Comments