cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069872 Numbers k such that k divides the concatenation all divisors in ascending order, i.e., k divides A037278(k).

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 10, 15, 16, 20, 24, 25, 30, 32, 40, 50, 60, 64, 80, 90, 96, 100, 104, 120, 124, 125, 128, 150, 160, 200, 240, 250, 255, 256, 288, 320, 360, 375, 380, 384, 400, 425, 464, 480, 495, 500, 512, 600, 618, 625, 640, 750, 795, 800, 864, 875, 960, 1000
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2002

Keywords

Comments

All the powers of 2 are terms.

Examples

			16 is a term as 16 divides 124816, 24 is a term as 24 divides 1234681224.
		

Crossrefs

Programs

  • Magma
    k:=1; sol:=[];
    for u in [1..1000] do D:=Divisors(u); conc:=D[1];
        for u1 in [2..#D] do a:=#Intseq(conc); a1:=#Intseq(D[u1]);conc:=10^a1*conc+D[u1];end for;
         if conc mod u eq 0 then sol[k]:=u; k:=k+1; end if;
    end for;
    sol; // Marius A. Burtea, Jun 01 2019
  • Mathematica
    Select[Range[1000],Divisible[FromDigits[Flatten[IntegerDigits/@ Divisors[ #]]],#]&] (* Harvey P. Dale, Dec 31 2012 *)
  • PARI
    f(n) = my(d=divisors(n), s=""); fordiv(n, d, s = concat(s, Str(d))); eval(s); \\ A037278
    isok(n) = f(n) % n == 0; \\ Michel Marcus, Jun 01 2019
    

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003