cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069891 a(n) = Sum_{k=1..n} A007913(k), the squarefree part of k.

Original entry on oeis.org

0, 1, 3, 6, 7, 12, 18, 25, 27, 28, 38, 49, 52, 65, 79, 94, 95, 112, 114, 133, 138, 159, 181, 204, 210, 211, 237, 240, 247, 276, 306, 337, 339, 372, 406, 441, 442, 479, 517, 556, 566, 607, 649, 692, 703, 708, 754, 801, 804, 805, 807, 858, 871, 924, 930, 985, 999
Offset: 0

Views

Author

Dean Hickerson, Apr 09 2002

Keywords

Comments

Sum_{k=1..n, k squarefree} (1/k) = Sum{k=1..n} (mu(k)^2/k) = (1/zeta(2))*(log(n) + gamma - 2*zeta'(2)/zeta(2)) + O(1/sqrt(n)). (Suryanarayana)

References

  • D. Suryanarayana, Asymptotic formula for sum_{n <= x} mu^{2}(n)/n, Indian J. Math. 9 (1967/1968) 543-545.

Crossrefs

Programs

  • Magma
    [0] cat [&+[Squarefree(k):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Dec 19 2019
    
  • Mathematica
    a[n_] := Sum[If[d == 1, 1, Times@@(1-#1[[1]]^2&) /@ FactorInteger[d]] * Binomial[Floor[n/d^2]+1, 2], {d, 1, Floor[Sqrt[n]]}]; Array[a, 100, 0] (* corrected by Amiram Eldar, Apr 02 2020 *)
  • PARI
    a(n) = sum(k=1, n, core(k)); \\ Michel Marcus, Dec 19 2019

Formula

a(n) = Sum_{d=1..floor(sqrt(n))} f(d)*binomial(floor(n/d^2)+1, 2) where f(d)=A046970(d) is the product of 1-p^2 over all prime divisors p of d.
a(n) is asymptotic to r*n^2, where r = Pi^2/30 = 0.3289868...