A069891 a(n) = Sum_{k=1..n} A007913(k), the squarefree part of k.
0, 1, 3, 6, 7, 12, 18, 25, 27, 28, 38, 49, 52, 65, 79, 94, 95, 112, 114, 133, 138, 159, 181, 204, 210, 211, 237, 240, 247, 276, 306, 337, 339, 372, 406, 441, 442, 479, 517, 556, 566, 607, 649, 692, 703, 708, 754, 801, 804, 805, 807, 858, 871, 924, 930, 985, 999
Offset: 0
Keywords
References
- D. Suryanarayana, Asymptotic formula for sum_{n <= x} mu^{2}(n)/n, Indian J. Math. 9 (1967/1968) 543-545.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Rafael Jakimczuk, Two Topics in Number Theory: Sum of Divisors of the Primorial and Sum of Squarefree Parts, International Mathematical Forum, Vol. 12, 2017, no. 7, pp. 331-338.
Programs
-
Magma
[0] cat [&+[Squarefree(k):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Dec 19 2019
-
Mathematica
a[n_] := Sum[If[d == 1, 1, Times@@(1-#1[[1]]^2&) /@ FactorInteger[d]] * Binomial[Floor[n/d^2]+1, 2], {d, 1, Floor[Sqrt[n]]}]; Array[a, 100, 0] (* corrected by Amiram Eldar, Apr 02 2020 *)
-
PARI
a(n) = sum(k=1, n, core(k)); \\ Michel Marcus, Dec 19 2019
Formula
a(n) = Sum_{d=1..floor(sqrt(n))} f(d)*binomial(floor(n/d^2)+1, 2) where f(d)=A046970(d) is the product of 1-p^2 over all prime divisors p of d.
a(n) is asymptotic to r*n^2, where r = Pi^2/30 = 0.3289868...
Comments