A069906 Number of pentagons that can be formed with perimeter n. In other words, number of partitions of n into five parts such that the sum of any four is more than the fifth.
0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 14, 16, 23, 25, 35, 39, 52, 57, 74, 81, 103, 111, 139, 150, 184, 197, 239, 256, 306, 325, 385, 409, 480, 507, 590, 623, 719, 756, 867, 911, 1038, 1087, 1232, 1289, 1453, 1516, 1701, 1774, 1981, 2061, 2293
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package, p. 19.
- G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: k-gon partitions, Bull. Austral Math. Soc., 64 (2001), 321-329.
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 1, 1, 0, -1, 0, -1, -2, 0, 0, 0, 0, 2, 1, 0, 1, 0, -1, -1, 0, -1, 0, 1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[x^5(1-x^11)/((1-x)(1-x^2)(1-x^4)(1-x^5)(1-x^6) (1-x^8)),{x,0,60}],x] (* Harvey P. Dale, Dec 16 2011 *)
Formula
G.f.: x^5*(1-x^11)/((1-x)*(1-x^2)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^8)).
a(2*n+8) = A026811(2*n+8) - A002621(n), a(2*n+9) = A026811(2*n+9) - A002621(n) for n >= 0. - Seiichi Manyama, Jun 08 2017
Comments