cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069906 Number of pentagons that can be formed with perimeter n. In other words, number of partitions of n into five parts such that the sum of any four is more than the fifth.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 14, 16, 23, 25, 35, 39, 52, 57, 74, 81, 103, 111, 139, 150, 184, 197, 239, 256, 306, 325, 385, 409, 480, 507, 590, 623, 719, 756, 867, 911, 1038, 1087, 1232, 1289, 1453, 1516, 1701, 1774, 1981, 2061, 2293
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Comments

From Frank M Jackson, Jul 10 2012: (Start)
I recently commented on A062890 that:
"Partition sets of n into four parts (sides) such that the sum of any three is more than the fourth do not uniquely define a quadrilateral, even if it is further constrained to be cyclic. This is because the order of adjacent sides is important. E.g. the partition set [1,1,2,2] for a perimeter n=6 can be reordered to generate two non-congruent cyclic quadrilaterals, [1,2,1,2] and [1,1,2,2], where the first is a rectangle and the second a kite."
This comment applies to all integer polygons (other than triangles) that are generated from a perimeter of length n. Not sure how best to correct for the above observation but my suggestion would be to change the definition of the present sequence to read:
"The number of cyclic integer pentagons differing only in circumradius that can be generated from an integer perimeter n." (End)

Crossrefs

Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), this sequence (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Programs

  • Mathematica
    CoefficientList[Series[x^5(1-x^11)/((1-x)(1-x^2)(1-x^4)(1-x^5)(1-x^6) (1-x^8)),{x,0,60}],x] (* Harvey P. Dale, Dec 16 2011 *)

Formula

G.f.: x^5*(1-x^11)/((1-x)*(1-x^2)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^8)).
a(2*n+8) = A026811(2*n+8) - A002621(n), a(2*n+9) = A026811(2*n+9) - A002621(n) for n >= 0. - Seiichi Manyama, Jun 08 2017