cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069929 Number of k, 1 <= k <= n, such that k^3+1 divides n^3+1.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 1, 3, 1, 2, 3, 3, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 5, 1, 3, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 3, 2, 2, 2, 3, 1, 2, 3, 4, 1, 3, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 4, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, May 05 2002

Keywords

Comments

Record values are a(1) = 1, a(3) = 2, a(5) = 3, a(17) = 4, a(47) = 5, a(251) = 6, a(467) = 7, a(719) = 9, a(9299) = 10, a(30203) = 12, a(166319) = 14, a(364979) = 15, a(3080159) = 16. - Charles R Greathouse IV, Nov 30 2024

Examples

			a(5) = 3 because among the numbers 1^3+1 = 2, 2^3+1 = 9, 3^3+1 = 28, 4^3+1 = 65, and 5^3 + 1 = 126, only 3 of them (2, 9, 126) divide 5^3+1 = 126. - _Petros Hadjicostas_, Sep 18 2019
		

Crossrefs

Cf. A066743.

Programs

  • Maple
    a:= n-> add(`if`(irem(n^3+1, k^3+1)=0, 1, 0), k=1..n):
    seq(a(n), n=1..120);  # Alois P. Heinz, Sep 18 2019
  • PARI
    for(n=1,150,print1(sum(i=1,n,if((n^3+1)%(i^3+1),0,1)),","))
    
  • PARI
    a(n)=sumdiv(n^3+1,d, ispower(d-1,3))-1 \\ Charles R Greathouse IV, Nov 30 2024

Formula

Conjecture: (1/n)*Sum_{k=1..n} a(k) = C*log(log(n)) + o(log(log(n))) with 1 < C < 3/2.
a(n) < d(n^3+1). - Charles R Greathouse IV, Nov 29 2024