A069929 Number of k, 1 <= k <= n, such that k^3+1 divides n^3+1.
1, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 1, 3, 1, 2, 3, 3, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 5, 1, 3, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 3, 2, 2, 2, 3, 1, 2, 3, 4, 1, 3, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 4, 2, 2
Offset: 1
Examples
a(5) = 3 because among the numbers 1^3+1 = 2, 2^3+1 = 9, 3^3+1 = 28, 4^3+1 = 65, and 5^3 + 1 = 126, only 3 of them (2, 9, 126) divide 5^3+1 = 126. - _Petros Hadjicostas_, Sep 18 2019
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A066743.
Programs
-
Maple
a:= n-> add(`if`(irem(n^3+1, k^3+1)=0, 1, 0), k=1..n): seq(a(n), n=1..120); # Alois P. Heinz, Sep 18 2019
-
PARI
for(n=1,150,print1(sum(i=1,n,if((n^3+1)%(i^3+1),0,1)),","))
-
PARI
a(n)=sumdiv(n^3+1,d, ispower(d-1,3))-1 \\ Charles R Greathouse IV, Nov 30 2024
Formula
Conjecture: (1/n)*Sum_{k=1..n} a(k) = C*log(log(n)) + o(log(log(n))) with 1 < C < 3/2.
a(n) < d(n^3+1). - Charles R Greathouse IV, Nov 29 2024
Comments