A066743 a(n) is the number of integers of the form (n^2+1)/(k^2+1), where k = 1,2,3,...,n.
1, 1, 3, 1, 2, 1, 4, 2, 2, 1, 2, 2, 5, 1, 2, 1, 5, 3, 2, 1, 4, 2, 4, 1, 2, 1, 4, 2, 2, 2, 4, 2, 4, 1, 2, 1, 4, 3, 2, 1, 2, 2, 6, 1, 2, 1, 9, 2, 2, 1, 2, 2, 4, 1, 3, 1, 8, 2, 2, 1, 2, 2, 4, 2, 2, 1, 4, 3, 2, 1, 2, 3, 7, 1, 2, 1, 4, 2, 2, 2, 3, 2, 7, 1, 2, 1, 4, 2, 3, 1, 4, 2, 5, 1, 2, 1, 4, 3, 4, 1, 2, 2, 4
Offset: 1
Keywords
Examples
a(7) = 4 because among the numbers 1^2+1 = 2, 2^2+1 = 5, 3^2+1 = 10, 4^2+1 = 17, 5^2+1 = 26, 6^2+1 = 37, 7^2+1 = 50, exactly 4 of them (2, 5, 10, and 50) divide 7^2+1 = 50. - _Petros Hadjicostas_, Sep 18 2019
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Wikipedia, Landau's problems.
Programs
-
Maple
a:= n-> add(`if`(irem(n^2+1, k^2+1)=0, 1, 0), k=1..n): seq(a(n), n=1..120); # Alois P. Heinz, Sep 18 2019
-
Mathematica
a[ n_ ] := Length[ Select[ Range[ 1, n ], IntegerQ[ (n^2+1)/(#^2+1) ]& ] ]
-
PARI
a(n) = sum(k=1, n, denominator((n^2+1)/(k^2+1)) == 1); \\ Michel Marcus, Sep 18 2019
Formula
Conjecture: (1/n)*Sum_{i=1..n} a(i) = c*log(log(n)) asymptotically with 1 < c < 2.
Extensions
Edited by Dean Hickerson, Jan 20 2002
Comments