cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A069930 Number of integers of the form (n+k)/(n-k) with 1 <= k <= n-1.

Original entry on oeis.org

0, 1, 2, 2, 2, 4, 2, 3, 4, 4, 2, 6, 2, 4, 6, 4, 2, 7, 2, 6, 6, 4, 2, 8, 4, 4, 6, 6, 2, 10, 2, 5, 6, 4, 6, 10, 2, 4, 6, 8, 2, 10, 2, 6, 10, 4, 2, 10, 4, 7, 6, 6, 2, 10, 6, 8, 6, 4, 2, 14, 2, 4, 10, 6, 6, 10, 2, 6, 6, 10, 2, 13, 2, 4, 10, 6, 6, 10, 2, 10, 8, 4, 2, 14, 6, 4, 6, 8, 2, 16, 6, 6, 6, 4, 6
Offset: 1

Views

Author

Benoit Cloitre, May 05 2002

Keywords

Comments

Number of r X s integer-sided rectangles such that r < s, r + s = 2n and r | s. - Wesley Ivan Hurt, Apr 24 2020

Crossrefs

Programs

Formula

a(n) = A032741(n) + A069283(n) = A000005(n) - 1 + A001227(n) - 1 = tau(n) + A001227(n) - 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 13 2002
Asymptotic formula: since sum(k=1, n, a(k)) = sum(k=1, n, tau(k)) + sum(k=1, n, A001227(k)) - 2*n = A006218(n) + A060831(n) - 2*n = 2*A006218(n) - A006218(floor(n/2)) - 2*n with A006218(0) = 0, A006218(n) = sum(k=1, n, tau(k)) and now, by Dirichlet's asymptotic expression A006218(n) = n*log(n) + n*(2*gamma-1) + O(n^theta) (gamma = 0.57721..; 1/4 <= theta < 1/2), we have sum(k=1, n, a(k)) = 2*n*log(n) - (n/2)*log(n) + o(n*log(n)) = 1.5*n*log(n) + o(n*log(n)) - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 13 2002
a(n) = tau(2*n) - 2. - Michael Somos, Aug 30 2012
Sum_{k=1..n} a(k) ~ n/2 * (3*log(n) + log(2) + 6*gamma - 7), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 13 2019

A066755 Numbers m such that m^2 + 1 is not divisible by k^2 + 1 for any k in [1,m-1].

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 34, 36, 40, 44, 46, 50, 54, 56, 60, 66, 70, 74, 76, 84, 86, 90, 94, 96, 100, 104, 110, 114, 116, 120, 124, 126, 130, 134, 136, 144, 146, 150, 156, 160, 164, 170, 176, 180, 184, 186, 190, 194, 196, 204, 206, 210, 214, 220, 224
Offset: 1

Views

Author

Benoit Cloitre, Jan 16 2002

Keywords

Comments

Equivalently, A066743(m)=1.
If m^2 + 1 is prime, m is in the sequence; i.e., the sequence contains A005574. But so are many other values of m: 34, 44, 46, 50, 60, 70, 76, 86, 96, ...
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are , 5, 29, 247, 2354, 23329, 232646, 2324131, ... . Apparently, the asymptotic density of this sequence exists and equals 0.232... . - Amiram Eldar, May 17 2025

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, 0, a(n-1)) while ormap(t->
          irem(k^2+1, t)=0, [(j^2+1)$j=1..k-1]) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 18 2019
  • Mathematica
    a66743[ n_ ] := Length[ Select[ Range[ 1, n ], IntegerQ[ (n^2+1)/(#^2+1) ]& ] ]; Select[ Range[ 1, 300 ], a66743[ # ]==1& ]
  • PARI
    { n=0; for (m=1, 10^10, k=1; b=1; t=m^2 + 1; while (k < m - 1, if (t%(k^2 + 1)==0, b=0; break); k++); if (b, write("b066755.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Mar 23 2010

Extensions

Edited by Dean Hickerson, Jan 20 2002

A069929 Number of k, 1 <= k <= n, such that k^3+1 divides n^3+1.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 3, 2, 2, 1, 3, 1, 2, 3, 3, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 5, 1, 3, 2, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 3, 2, 2, 2, 3, 1, 2, 3, 4, 1, 3, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 1, 5, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 4, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, May 05 2002

Keywords

Comments

Record values are a(1) = 1, a(3) = 2, a(5) = 3, a(17) = 4, a(47) = 5, a(251) = 6, a(467) = 7, a(719) = 9, a(9299) = 10, a(30203) = 12, a(166319) = 14, a(364979) = 15, a(3080159) = 16. - Charles R Greathouse IV, Nov 30 2024

Examples

			a(5) = 3 because among the numbers 1^3+1 = 2, 2^3+1 = 9, 3^3+1 = 28, 4^3+1 = 65, and 5^3 + 1 = 126, only 3 of them (2, 9, 126) divide 5^3+1 = 126. - _Petros Hadjicostas_, Sep 18 2019
		

Crossrefs

Cf. A066743.

Programs

  • Maple
    a:= n-> add(`if`(irem(n^3+1, k^3+1)=0, 1, 0), k=1..n):
    seq(a(n), n=1..120);  # Alois P. Heinz, Sep 18 2019
  • PARI
    for(n=1,150,print1(sum(i=1,n,if((n^3+1)%(i^3+1),0,1)),","))
    
  • PARI
    a(n)=sumdiv(n^3+1,d, ispower(d-1,3))-1 \\ Charles R Greathouse IV, Nov 30 2024

Formula

Conjecture: (1/n)*Sum_{k=1..n} a(k) = C*log(log(n)) + o(log(log(n))) with 1 < C < 3/2.
a(n) < d(n^3+1). - Charles R Greathouse IV, Nov 29 2024
Showing 1-3 of 3 results.