A069942 Reversal of n equals the sum of the reversals of the proper divisors of n.
6, 10311, 21661371, 1460501511, 7980062073, 79862699373, 798006269373
Offset: 1
Examples
The reversal of 10311 is 11301 and the reversals of its proper divisors are: 1, 3, 7, 12, 194, 3741, 7343. Adding the proper divisor reversals 1 + 3 + 7 + 12 + 194 + 3741 + 7343 = 11301, so 10311 belongs to the sequence.
Links
- Joseph L. Pe, On a Generalization of Perfect Numbers, J. Rec. Math., 31(3) (2002-2003), 168-172.
- Joseph L. Pe, The Picture-Perfect Numbers, Mathematical Spectrum, 40(1) (2007/2008).
- Joseph L. Pe, The Picture-Perfect Numbers
- Joseph L. Pe, Picture-Perfect Numbers and Other Digit-Reversal Diversions
- Rulthan P. Sumicad, On the Picture-Perfect Number, J. Math. Stat. Studies (2023).
Programs
-
Mathematica
f = IntegerReverse; Do[If[f[n] == Apply[Plus, Map[f, Drop[Divisors[n], -1]]], Print[n]], {n, 2, 10^8}]
-
Python
from sympy import divisors A069942 = [n for n in range(1,10**5) if sum(list(map(lambda x: int(str(x)[::-1]) if x < n else 0, divisors(n)))) == int(str(n)[::-1])] # Chai Wah Wu, Aug 13 2014
Extensions
a(5)-a(7) found by Jens Kruse Andersen, May 01 2002; Jul 04 2002
Corrected links. - Alan T. Koski, Nov 25 2012
Comments