cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A072228 Numbers k such that k equals the sum of the reverses of the proper divisors of k.

Original entry on oeis.org

6, 244, 285, 133857, 141635817, 273722772124
Offset: 1

Views

Author

Joseph L. Pe, Jul 05 2002

Keywords

Comments

I call these numbers "anti-perfect" (compare with the picture-perfect numbers A069942).
a(7) > 10^12. - Giovanni Resta, Apr 07 2017

Examples

			The proper divisors of 285 are 1, 3, 5, 15, 19, 57, 95, with sum of reverses = 1 + 3 + 5 + 51 + 91 + 75 + 59 = 285. Therefore 285 is anti-perfect.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[ If[n == Apply[Plus, Map[f, Drop[Divisors[n], -1]]], Print[n]], {n, 2, 10^7}]
    Select[Range[15*10^7],Total[IntegerReverse[Most[Divisors[#]]]]==#&] (* Requires Mathematica version 10 or later *) (* The program takes a long time to run *) (* Harvey P. Dale, Aug 31 2016 *)

Extensions

One more term from Farideh Firoozbakht, Dec 23 2004
a(6) from Giovanni Resta, Apr 07 2017

A072234 Numbers k such that reverse(k) = sum of the proper divisors of k.

Original entry on oeis.org

6, 498906, 20671542, 41673714, 73687923, 4158499614, 922964834547
Offset: 1

Views

Author

Joseph L. Pe, Jul 05 2002

Keywords

Comments

Mark Ganson conjectures that all terms are divisible by 3.
Jens Kruse Andersen discovered that 4158499614 is in the sequence (although he did not rule out the possibility that there were missing terms below this - that was established by Giovanni Resta).
a(8) > 10^13. - Giovanni Resta, Dec 12 2013

Examples

			The proper divisors of 498906 are 1, 2, 3, 6, 9, 18, 27, 54, 9239, 18478, 27717, 55434, 83151, 166302, 249453, which sum to 609894, the reverse of 498906; hence 498906 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    f = IntegerReverse; Do[ If[f[n] == Apply[Plus, Drop[Divisors[n], -1]], Print[n]], {n, 2, 10^9}]
    Select[Range[500000],IntegerReverse[#]==Total[Most[Divisors[#]]]&] (* The program generates the first 2 terms of the sequence. To generate more, increase the Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Dec 30 2024 *)
  • PARI
    for(n=1,10^9,if(sigma(n)-n==eval(concat(Vecrev(Str(n)))),print1(n,","))) \\ Edward Jiang, Sep 10 2014

Extensions

a(6) confirmed and a(7) discovered by Giovanni Resta, Dec 12 2013

A075130 Primes with decimal representation 140{{0}10{9}89}.

Original entry on oeis.org

140001089, 1401099989, 14000109989, 140108910989, 1401089109989, 14001089001089, 14010890109989, 140000010891089, 140000109999989, 140010890010989, 140010989001089, 140010989109989, 140108900109989
Offset: 1

Views

Author

Jens Kruse Andersen, Sep 04 2002

Keywords

Comments

57 times one of these primes is a picture-perfect number (see A075131).

Examples

			a(4)=140108910989 because this is the 4th prime of the required form.
		

Crossrefs

A075131(n)=57*a(n)

A080716 Numbers n such that sum of the divisors of n equals the sum of the reversals of the divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 30, 33, 42, 44, 55, 66, 77, 88, 99, 101, 121, 131, 151, 181, 191, 202, 242, 262, 303, 313, 330, 353, 363, 373, 383, 393, 404, 462, 484, 505, 606, 626, 681, 707, 727, 757, 772, 787, 797, 808, 824, 890, 909, 919, 929, 939, 989, 1111
Offset: 1

Views

Author

Joseph L. Pe, Mar 05 2003

Keywords

Examples

			Sum of divisors of 30: 1+2+3+5+6+10+15+30=72; sum of reversals of divisors of 30: 1+2+3+5+6+1+51+3=72. Therefore 30 belongs to the sequence.
		

Crossrefs

Programs

  • Maple
    isA080716 := proc(n)
        simplify(A069192(n) = numtheory[sigma](n)) ;
    end proc:
    for n from 1 to 1000 do
        if isA080716(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 09 2015
  • Mathematica
    rev[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Select[Range[10^4], Apply[Plus, Map[rev, Divisors[ # ]]] == DivisorSigma[1, # ] &]
    Select[Range[1200],Total[IntegerReverse/@Divisors[#]]==DivisorSigma[1,#]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 07 2020 *)

A195144 Reversal of n equals the sum of the reversals of the anti-divisors of n.

Original entry on oeis.org

5, 8, 895799
Offset: 1

Views

Author

Paolo P. Lava and Donovan Johnson, Sep 12 2011

Keywords

Comments

Like A069942 but using anti-divisors. No other terms up to 3*10^10.

Examples

			The first two terms are banal cases: anti-divisors of 5 are 2 and 3 and their reversals are again 5, 2 and 3 and 2+3 = 5. The same for 8: 3+5 = 8. Anti-divisors of 895799 are 2, 3, 199, 597, 3001, 9003, 597199 and 2+3+991+795+1003+3009+991795 = 997598.
		

Crossrefs

Programs

  • Maple
    Rev:=proc(n)
    local a,i,k;
      i:=convert(n,base,10); a:=0;
      for k from 1 to nops(i) do a:=a*10+i[k]; od;
      a;
    end:
    P:=proc(j)
    local h,m,n,r;
    for m from 3 to j  do
      h:=0;
      for r from 2 to m-1 do
        if abs((m mod r)-r/2)<1 then h:=h+Rev(r); print(r); fi;
      od;
      if h=Rev(m) then print(m); fi;
    od;
    end:
    P(1000000);

A196677 Numbers n such that sum of the divisors of n equals the sum of the reversals of the divisors of n. Numbers with all palindrome divisors are not in the sequence.

Original entry on oeis.org

30, 42, 330, 462, 681, 772, 824, 890, 989, 2180, 3030, 4242, 4542, 4722, 8074, 9775, 17331, 23980, 33330, 35823, 36213, 43263, 46662, 47324, 55805, 62121, 62421, 65301, 65451, 66441, 66741, 68181, 68331, 68631, 68781, 69171, 71215, 71452, 73565, 74391, 74417, 74572, 74972
Offset: 1

Views

Author

Paolo P. Lava, Oct 05 2011

Keywords

Comments

Subset of A080716.
The numbers that are not considered here belong to A062687, numbers all of whose divisors are palindromic. - Michel Marcus, Oct 10 2014
The sequence contains the terms palindromic numbers: 989, 97079, 98789, 99299, 1226221, 1794971, 13488431,…. Divisors(97079) = {1, 193, 503, 97079} and 193 + 503 = 696 = 391 + 305. Divisors(1794971) = {1, 1031, 1741, 1794971} and 1031 + 1741 = 2772 = 1301 + 1471. - Marius A. Burtea, Nov 20 2019

Examples

			Divisors of 989 are 1, 23, 43, 989 and 1+23+43+989=1+32+34+989=1056.
Divisors of 8074 are 1, 2, 11, 22, 367, 734, 4037, 8074 and 1+2+11+22+367+734+4037+8074=1+2+11+22+763+437+7304+4708=13248.
		

Crossrefs

Programs

  • Magma
    f:=func; g:=func; [k:k in [1..80000]| g(k) and not forall{d:d in Divisors(k)|f(d)}]; // Marius A. Burtea, Nov 20 2019
  • Maple
    Rev:=proc(n)
    local a,i,k;
    i:=convert(n,base,10); a:=0;
    for k from 1 to nops(i) do a:=a*10+i[k]; od;
    a;
    end:
    P:=proc(j)
    local h,m,n,ok,p,r,t;
    for m from 1 to j  do
      p:=divisors(m); t:=0; ok:=0;
      for r from 1 to nops(p) do t:=t+Rev(p[r]); if p[r]<>Rev(p[r]) then ok:=1; fi;     od;
      if ok=1 and sigma(m)=t then print(m); fi;
    od;
    end:
    P(100000);
    # alternative
    isA196677 := proc(n)
        isA080716(n) and not isA062687(n) ;
    end proc:
    n := 1;
    for i from 1 do
        if isA196677(i) then
            printf("%d %d\n",n,i) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Sep 09 2015

A203616 Numbers k such that the reversal of sigma*(k) equals the sum of the reversals of the anti-divisors of k, where sigma*(k) is the sum of the anti-divisors of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 20, 63, 96, 97, 317, 596, 1473, 3934, 26777, 27684, 50867, 51767, 62417, 322001, 393216, 1308775, 1420260, 1851474, 2651867, 2659067, 3040656, 3227267, 3289277, 3376007, 4626917, 4639067, 5378507, 6054521, 6227027, 6239839, 6439067, 6581929
Offset: 1

Views

Author

Paolo P. Lava, Jan 20 2012

Keywords

Comments

A066466 is a subsequence of this sequence.

Examples

			n=317. Anti-divisors: 2, 3, 5, 127, 211.
Sum of the reversals of the anti-divisors: 2+3+5+721+112=843.
Sigma*(317)=348 and its reversal is 843.
n=1473. Anti-divisors: 2, 5, 6, 7, 19, 31, 95, 155, 421, 589, 982.
Sum of the reversals of the anti-divisors:
2+5+6+7+91+13+59+551+124+985+289=2132.
Sigma*(1473)=2312 and its reversal is 2132.
		

Crossrefs

Programs

  • Maple
    isA203616:=proc(j) local a,b,c;   a:=0; b:=0;
       for c from 2 to j-1 do
         if abs((j mod c)-c/2)<1 then a:=a+A004086(c); b:=b+c; fi;
       od;
    evalb(A004086(b)=a) end: # simplified by M. F. Hasler, Jan 29 2012
    for n to 10^7 do if isA203616(n) then lprint(n) fi od: # simplified by M. F. Hasler, Jan 29 2012
  • Python
    from itertools import count, islice
    from sympy.ntheory.factor_ import antidivisors
    def a203616():
        isa = lambda n: str(sum((a:=antidivisors(n))))[::-1]==str(sum(map(int, (str()[::-1] for  in a))))
        yield from (n for n in count(1) if isa(n))
    a203616_list = [*islice(a203616(), 20)] # Dumitru Damian, Feb 12 2024

Extensions

a(22)-a(40) from Dumitru Damian, Feb 12 2024

A075131 Picture-perfect numbers of form 57*p for p in A075130. The decimal reversal is equal to the sum of the reversed proper divisors.

Original entry on oeis.org

7980062073, 79862699373, 798006269373, 7986207926373, 79862079269373, 798062073062073, 798620736269373, 7980000620792073, 7980006269999373, 7980620730626373, 7980626373062073, 7980626379269373, 7986207306269373
Offset: 1

Views

Author

Jens Kruse Andersen, Sep 04 2002

Keywords

Comments

All known picture-perfect numbers are of this form, except the first 4 in A069942. - Jens Kruse Andersen, May 06 2008

Examples

			a(4)=57*140108910989=7986207926373.
		

Crossrefs

a(n) = 57*A075130(n)

Extensions

Edited by Jens Kruse Andersen, May 06 2008

A101701 Numbers n such that n = sum of the reversals of divisors of n.

Original entry on oeis.org

1, 207321, 890827, 7591023, 18368601, 4885292403
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 23 2004

Keywords

Comments

a(7) > 10^11. - Donovan Johnson, Dec 27 2013

Examples

			18368601 is in the sequence because divisors of 18368601 are 1, 3, 6122867, 18368601 and 18368601 = 1 + 3 + 7682216 + 10686381.
		

Crossrefs

Programs

  • Mathematica
    Do[h = Divisors[n]; l = Length[h]; If[n == Sum[ FromDigits[Reverse[IntegerDigits[h[[k]]]]], {k, l}], Print[n]], {n, 370000000}]
  • Python
    from sympy import divisors
    A101701_list = [n for n in range(1,10**6) if n == sum([int(d) for d in (str(x)[::-1] for x in divisors(n))])]
    # Chai Wah Wu, Dec 06 2014

Extensions

a(6) from Donovan Johnson, Dec 07 2008

A203615 Reversal of sigma(n) equals the sum of the reversals of the divisors of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 21, 938, 17797, 44045, 87001, 454085, 2217425, 8156450, 8475789, 3293216050, 11130063842, 44662814795, 77084972662
Offset: 1

Views

Author

Paolo P. Lava, Jan 20 2012

Keywords

Comments

a(20) > 2.34*10^12. - Giovanni Resta, Aug 30 2018

Examples

			n=17797. Divisors: 1, 13, 37, 481, 1369, 17797.
Sum of the reversals of the divisors: 1+31+73+184+9631+79771=89691.
Sigma(17797)=19698 and its reversal is 89691.
n=454085. Divisors: 1, 5, 197, 461, 985, 2305, 90817, 454085.
Sum of the reversals of the divisors: 1+5+791+164+589+5032+71809+580454=658845.
Sigma(454085)=548856 and its reversal is 658845.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    Rev:=proc(n)
    local a, i, k;
      i:=convert(n,base,10); a:=0;
      for k from 1 to nops(i) do a:=a*10+i[k]; od;
      a;
    end:
    P:=proc(s)
    local a, b, c, j, pfs;
    for j from 1 to s do
      b:=divisors(j); a:=0;
      for c from 1 to nops(b) do a:=a+Rev(b[c]); od;
      if Rev(sigma(j))=a then print(j); fi;
    od;
    end:
    P(10000000);
  • Mathematica
    Select[Range[33*10^8],Total[IntegerReverse/@Divisors[#]] == IntegerReverse[ DivisorSigma[ 1,#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 09 2018 *)

Extensions

a(13)-a(16) from Donovan Johnson, Jan 29 2012
a(17)-a(19) from Giovanni Resta, Aug 30 2018
Showing 1-10 of 11 results. Next