cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A247826 Numbers k with at least one nonpalindromic divisor such that the sum of sigma(d) = the sum of sigma(reverse(d)), where d runs over the divisors of k.

Original entry on oeis.org

16331, 98639, 161051, 179641, 272802, 1206611, 1226221, 1649431, 1794971, 6061206, 6177253, 8792914, 13488431, 16266151, 29498851, 61887064, 66673266, 69536743, 123848321, 440664044
Offset: 1

Views

Author

Paolo P. Lava, Sep 30 2014

Keywords

Examples

			Divisors of 16331 are 1, 7, 2333, 16331;
sigma(1) = 1, sigma(7) = 8, sigma(2333) = 2334, sigma(16331) = 18672 and 1 + 8 + 2334 + 18672 = 21015.
sigma(1) = 1, sigma(7) = 8, sigma(3332) = 7182, sigma(13361) = 13824 and 1 + 8 + 7182 + 13824 = 21015.
Divisors of 98639 are 1, 98639;
sigma(1) = 1, sigma(98639) = 98640, and 1 + 98640 = 98641.
sigma(1) = 1, sigma(93689) = 98640, and 1 + 98640 = 98641.
		

Crossrefs

Programs

  • Maple
    with(numtheory); T:=proc(h) local x,y,w; x:=h; y:=0;
    for w from 1 to ilog10(h)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local a,b,c,k,n,ok;
    for n from 1 to q do a:=divisors(n); b:=0; c:=0; ok:=0;
    for k from 1 to nops(a) do b:=b+sigma(T(a[k])); c:=c+sigma(a[k]);
    if a[k]<>T(a[k]) then ok:=1; fi; od;
    if ok=1 and c=b then print(n); fi; od; end: P(10^9);
  • PARI
    rev(n) = subst(Polrev(digits(n)), x, 10);
    isok(n) = {nbpal = sumdiv(n, d, rev(d)==d); if (nbpal == numdiv(n), return(0)); sumdiv(n, d, sigma(d)) == sumdiv(n, d, sigma(rev(d)));} \\ Michel Marcus, Oct 04 2014
    
  • PARI
    rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r)
    for(n=1,10^6,D=divisors(n);c=0;for(k=1,#D,if(D[k]==rev(D[k]),c++));if(c!=#D,if(sumdiv(n,i,sigma(i))==sumdiv(n,j,sigma(rev(j))),print1(n,", ")))) \\ Derek Orr, Oct 26 2014

Extensions

a(6)-a(12) from Michel Marcus, Oct 04 2014
Definition edited by Derek Orr, Oct 26 2014
a(13)-a(20) from Jinyuan Wang, Apr 08 2025
Showing 1-1 of 1 results.