cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A196677 Numbers n such that sum of the divisors of n equals the sum of the reversals of the divisors of n. Numbers with all palindrome divisors are not in the sequence.

Original entry on oeis.org

30, 42, 330, 462, 681, 772, 824, 890, 989, 2180, 3030, 4242, 4542, 4722, 8074, 9775, 17331, 23980, 33330, 35823, 36213, 43263, 46662, 47324, 55805, 62121, 62421, 65301, 65451, 66441, 66741, 68181, 68331, 68631, 68781, 69171, 71215, 71452, 73565, 74391, 74417, 74572, 74972
Offset: 1

Views

Author

Paolo P. Lava, Oct 05 2011

Keywords

Comments

Subset of A080716.
The numbers that are not considered here belong to A062687, numbers all of whose divisors are palindromic. - Michel Marcus, Oct 10 2014
The sequence contains the terms palindromic numbers: 989, 97079, 98789, 99299, 1226221, 1794971, 13488431,…. Divisors(97079) = {1, 193, 503, 97079} and 193 + 503 = 696 = 391 + 305. Divisors(1794971) = {1, 1031, 1741, 1794971} and 1031 + 1741 = 2772 = 1301 + 1471. - Marius A. Burtea, Nov 20 2019

Examples

			Divisors of 989 are 1, 23, 43, 989 and 1+23+43+989=1+32+34+989=1056.
Divisors of 8074 are 1, 2, 11, 22, 367, 734, 4037, 8074 and 1+2+11+22+367+734+4037+8074=1+2+11+22+763+437+7304+4708=13248.
		

Crossrefs

Programs

  • Magma
    f:=func; g:=func; [k:k in [1..80000]| g(k) and not forall{d:d in Divisors(k)|f(d)}]; // Marius A. Burtea, Nov 20 2019
  • Maple
    Rev:=proc(n)
    local a,i,k;
    i:=convert(n,base,10); a:=0;
    for k from 1 to nops(i) do a:=a*10+i[k]; od;
    a;
    end:
    P:=proc(j)
    local h,m,n,ok,p,r,t;
    for m from 1 to j  do
      p:=divisors(m); t:=0; ok:=0;
      for r from 1 to nops(p) do t:=t+Rev(p[r]); if p[r]<>Rev(p[r]) then ok:=1; fi;     od;
      if ok=1 and sigma(m)=t then print(m); fi;
    od;
    end:
    P(100000);
    # alternative
    isA196677 := proc(n)
        isA080716(n) and not isA062687(n) ;
    end proc:
    n := 1;
    for i from 1 do
        if isA196677(i) then
            printf("%d %d\n",n,i) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Sep 09 2015
Showing 1-1 of 1 results.