cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A247012 Consider the aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to the reverse of themselves.

Original entry on oeis.org

6, 133, 172, 841, 1005, 1603, 4258, 5299, 192901, 498906, 1633303, 5307589, 16333303, 20671542, 41673714, 42999958, 73687923
Offset: 1

Views

Author

Paolo P. Lava, Sep 09 2014

Keywords

Comments

A072234 is a subset of this sequence.
a(18) > 2*10^8. - Tyler Busby, Mar 19 2023

Examples

			Aliquot parts of 1005 are 1, 3, 5, 15, 67, 201 and 335:
  1 + 3 + 5 + 15 + 67 + 201 + 335 = 627;
  3 + 5 + 15 + 67 + 201 + 335 + 627 = 1253;
  5 + 15 + 67 + 201 + 335 + 627 + 1253 = 2503;
  15 + 67 + 201 + 335 + 627 + 1253 + 2503 = 5001 that is the reverse of 1005.
Aliquot parts of 1603 are 1, 7 and 229:
  1 + 7 + 229 = 237;
  7 + 229 + 237 = 473;
  229 + 237 + 473 = 939;
  237 + 473 + 939 = 1649;
  473 + 939 + 1649 = 3061 that is the reverse of 1603;
		

Crossrefs

Programs

  • Maple
    with(numtheory): R:=proc(w) local x,y; x:=w; y:=0;
    while x>0 do y:=10*y+(x mod 10); x:=trunc(x/10); od: y; end:
    P:=proc(q,h) local a,b,c,k,n,t,v; v:=array(1..h);
    for n from 2 to q do if not isprime(n) then
    a:=sort([op(divisors(n))]); b:=nops(a)-1; c:=ilog10(n)+1;
    for k from 1 to b do v[k]:=a[k]; od;
    t:=b+1; v[t]:=add(v[k], k=1..b);
    if R(v[t])=n then print(n); else
    while ilog10(v[t])+1<=c do t:=t+1; v[t]:=add(v[k], k=t-b..t-1);
    if R(v[t])=n then print(n); break; fi; od; fi; fi; od;
    end: P(10^9, 1000);
  • Mathematica
    A247012 = {};
    For[n = 4, n <= 1000000, n++,
     If[PrimeQ[n], Continue[]];
     r = IntegerReverse[n];
     a = Most[Divisors[n]];
     sum = Total[a];
     While[sum < r, sum = Total[a = Join[Rest[a], {sum}]]];
     If[sum == r, AppendTo[A247012, n]];
    ]; A247012 (* Robert Price, Sep 08 2019 *)
  • Python
    from sympy import isprime, divisors
    A247012_list = []
    for n in range(2,10**9):
        m = int(str(n)[::-1])
        if not isprime(n):
            x = divisors(n)
            x.pop()
            y = sum(x)
            while y < m:
                x, y = x[1:]+[y], 2*y-x[0]
            if y == m:
                A247012_list.append(n) # Chai Wah Wu, Sep 12 2014

Extensions

a(9), a(11)-a(17) from Chai Wah Wu, Sep 13 2014

A072394 Numbers n such that sigma(n)=reversal(n)-n.

Original entry on oeis.org

1563, 1633, 18673, 32207, 1405313, 1567563, 1656833, 193613415, 325933027, 376491249, 2287850446, 2432416646, 13823276223, 14055445313, 19087920283, 23804849568, 36303512827, 148868530953
Offset: 1

Views

Author

Joseph L. Pe, Jul 21 2002

Keywords

Comments

If (58*1000^n-169)/111 is prime then (58*1000^n-169)/37 is in the sequence (the proof is easy). Next term is greater than 12*10^8. - Farideh Firoozbakht, Jan 29 2006
From Farideh Firoozbakht, May 25 2010: (Start)
If p = 156/101*(10^(4n)-1)-1 is prime then 91*p is in the sequence (the proof is easy).
A178321 gives numbers n such that (58*1000^n-169)/111 = 58/111*(10^(3n)-1)-1 is prime and A178322 gives numbers n such that 156/101*(10^(4n)-1)-1 is prime. (End)
a(19) > 10^12. - Giovanni Resta, Oct 28 2012

Examples

			reverse(1563) - 1563 = 3651 - 1563 = 2088 = sigma(1563), so 1563 is a term of the sequence.
376491249 is in the sequence because sigma(376491249)=565703424 =942194673-376491249=reversal(376491249)-376491249.
		

Crossrefs

Cf. A072234.
Cf. A178321, A178322. [From Farideh Firoozbakht, May 25 2010]

Programs

  • Mathematica
    Select[Range[10^6], FromDigits[Reverse[IntegerDigits[n]]] - # == DivisorSigma[1, # ] &]
    Do[If[DivisorSigma[1,n]==FromDigits[Reverse[IntegerDigits[n]]]- n,Print[n]],{n,1200000000}] (* Farideh Firoozbakht *)

Extensions

More terms from Farideh Firoozbakht, Jan 29 2006
a(11)-a(17) from Donovan Johnson, Dec 21 2008
a(18) from Giovanni Resta, Oct 28 2012

A329663 Numbers k such that the binary reversal of k (A030101) is equal to the sum of the proper divisors of k (A001065).

Original entry on oeis.org

2, 1881, 49905, 54585, 63405, 196785, 853785, 2094897, 3925449, 32480685, 1925817945, 1994453385, 961201916805
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2020

Keywords

Comments

a(13) > 1.45*10^11.
a(14) > 5*10^12, if it exists. - Giovanni Resta, Feb 29 2020

Examples

			2 is a term since its binary representation is 10, its binary reversal is 01 = 1 which is equal to the sum of the proper divisors of 2.
1881 is a term since its binary representation is 11101011001, its binary reversal is 10011010111 which is equal to 1239, which is also the sum of the proper divisors of 1881: 1 + 3 + 9 + 11 + 19 + 33 + 57 + 99 + 171 + 209 + 627 = 1239.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], DivisorSigma[1, #] - # == IntegerReverse[#, 2] &]
  • PARI
    isok(k) = sigma(k) - k == fromdigits(Vecrev(binary(k)), 2); \\ Michel Marcus, Feb 29 2020

Extensions

a(13) from Giovanni Resta, Feb 29 2020
Showing 1-3 of 3 results.