A069943 a(n) = numerator(b(n)), where b(1) = b(2) = 1, b(n) = (b(n-1) + b(n-2))/(n-1).
1, 1, 1, 2, 5, 13, 19, 29, 191, 131, 1187, 2231, 17519, 71063, 29881, 323423, 2887921, 13237457, 2397389, 15030317, 742458253, 3748521653, 9670072483, 25451905333, 10932619111, 78684575461, 4163946939067, 11799518538967, 136025604432743
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..840
Programs
-
Magma
A013989:= func< n | (&+[Factorial(n)/(2^k*Factorial(n-2*k)*Factorial(k)): k in [0..Floor(n/2)]]) >; A069944:= func< n | Numerator(A013989(n-1)/Factorial(n)) >; [A069944(n): n in [1..40]]; // G. C. Greubel, Aug 17 2022
-
Mathematica
Table[Numerator[n*(-I/Sqrt[2])^(n-1)*HermiteH[n-1, I/Sqrt[2]]/n!], {n, 40}] (* G. C. Greubel, Aug 17 2022 *) nxt[{n_,a_,b_}]:={n+1,b,(a+b)/n}; NestList[nxt,{2,1,1},30][[;;,2]]//Numerator (* Harvey P. Dale, Feb 02 2025 *)
-
SageMath
@CachedFunction def A013989(n): return n+1 if (n<2) else (n+1)*(A013989(n-1) + n*A013989(n-2))/n [numerator(A013989(n-1)/factorial(n)) for n in (1..40)] # G. C. Greubel, Aug 17 2022
Formula
Numerators in the power series of exp(x+x^2/2) (e.g.f. for involutions, cf. A000085). exp(x+x^2/2) = 1 + x + x^2 + 2/3*x^3 + 5/12*x^4 + 13/60*x^5 + 19/180*x^6 + 29/630*x^7 + 191/10080*x^8 + ... [Joerg Arndt, May 10 2008]
a(n) = numerator( A013989(n-1)/n! ). - G. C. Greubel, Aug 17 2022
Comments