cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069943 a(n) = numerator(b(n)), where b(1) = b(2) = 1, b(n) = (b(n-1) + b(n-2))/(n-1).

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 19, 29, 191, 131, 1187, 2231, 17519, 71063, 29881, 323423, 2887921, 13237457, 2397389, 15030317, 742458253, 3748521653, 9670072483, 25451905333, 10932619111, 78684575461, 4163946939067, 11799518538967, 136025604432743
Offset: 1

Views

Author

Benoit Cloitre, Apr 27 2002

Keywords

Comments

Sum_{k>=1} b(k) = exp(3/2). More generally if b(1) = b(2) = ... = b(m) = 1 and b(n+m+1) = (1/(n+m))*(b(n+m) + b(n+m-1) + ... + b(n)) then Sum_{k>=1} b(k) = exp(H(m)) where H(m) = Sum_{j=1..m} 1/j is the m-th harmonic number. [Benoit Cloitre and Boris Gourevitch]

Crossrefs

Programs

  • Magma
    A013989:= func< n | (&+[Factorial(n)/(2^k*Factorial(n-2*k)*Factorial(k)): k in [0..Floor(n/2)]]) >;
    A069944:= func< n | Numerator(A013989(n-1)/Factorial(n)) >;
    [A069944(n): n in [1..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    Table[Numerator[n*(-I/Sqrt[2])^(n-1)*HermiteH[n-1, I/Sqrt[2]]/n!], {n, 40}] (* G. C. Greubel, Aug 17 2022 *)
    nxt[{n_,a_,b_}]:={n+1,b,(a+b)/n}; NestList[nxt,{2,1,1},30][[;;,2]]//Numerator (* Harvey P. Dale, Feb 02 2025 *)
  • SageMath
    @CachedFunction
    def A013989(n): return n+1 if (n<2) else (n+1)*(A013989(n-1) + n*A013989(n-2))/n
    [numerator(A013989(n-1)/factorial(n)) for n in (1..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n)/A069944(n) = A000085(n-1)/A000142(n-1) in lowest terms. [Christian G. Bower, Jan 14 2006]
Numerators in the power series of exp(x+x^2/2) (e.g.f. for involutions, cf. A000085). exp(x+x^2/2) = 1 + x + x^2 + 2/3*x^3 + 5/12*x^4 + 13/60*x^5 + 19/180*x^6 + 29/630*x^7 + 191/10080*x^8 + ... [Joerg Arndt, May 10 2008]
a(n) = numerator( A013989(n-1)/n! ). - G. C. Greubel, Aug 17 2022