cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069948 a(n) = 1/exp(1) * Sum_{k>=0} (k+n)!^2 / k!^3.

Original entry on oeis.org

1, 5, 87, 2971, 163121, 12962661, 1395857215, 194634226067, 33990369362241, 7247035915622821, 1848636684656077991, 555005864462114884875, 193458213840943964983537, 77399534126148191747554181, 35196002960227350045891984591, 18037244723394790042393195636291
Offset: 0

Views

Author

Robert G. Wilson v, May 02 2002

Keywords

Comments

From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = sum_{j>=0}(exp(j!/(j-n)!*x-1)/j!) then a(n) = 3! [x^3] taylor(B_{n}(x)), where [x^3] denotes the coefficient of x^3 in the Taylor series for B_{n}(x).
a(n) is column 3 of the square array representation of A090210. (End)

Crossrefs

Programs

  • Maple
    A069948 := proc(n) exp(-x)*n!^2*hypergeom([n+1,n+1],[1,1],x);
    round(evalf(subs(x=1,%),99)) end:
    seq(A069948(n),n=0..13); # Peter Luschny, Mar 30 2011
    # second Maple program:
    a:= n-> sum((k+n)!^2/k!^3, k=0..infinity)/exp(1):
    seq(a(n), n=0..15);  # Alois P. Heinz, May 17 2018
  • Mathematica
    f[n_] := f[n] = Sum[(k + n)!^3/((k + n)!*(k!^3)*E), {k, 0, Infinity}]; Table[ f[n], {n, 0, 13}] (* or *)
    Table[n!^2*HypergeometricPFQ[{n + 1, n + 1}, {1, 1}, 1]/Exp[1], {n, 0, 13}] (* Robert G. Wilson v, Jan 11 2007 *)
  • PARI
    {default(realprecision, 200)}; for(n=0,30, print1(round(exp(-1)*(n!)^2*sum(k=0,500, binomial(n+k, k)^2/k!)), ", ")) \\ G. C. Greubel, May 17 2018

Formula

Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation: a(n)=int(x^n*2*BesselK(0,2*sqrt(x))*hypergeom([],[1,1],x)/exp(1), x=0..infinity), n=0,1... Special values of the hypergeometric function of type 2F2: a(n)=exp(-1)*GAMMA(n+1)^2*hypergeom([n+1, n+1], [1, 1], 1). - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
Recurrence: (8*n-7)*a(n) = (24*n^3 + 3*n^2 - 26*n + 4)*a(n-1) - (n-1)^2*(24*n^3 - 85*n^2 + 66*n + 13)*a(n-2) + (n-1)^2*(8*n+1)*(n-2)^4*a(n-3). - Vaclav Kotesovec, Jul 30 2013
a(n) ~ n^(2*n+1/3)*exp(n^(1/3) + 3*n^(2/3) - 2*n - 2/3)/sqrt(3) * (1 + 41/(54*n^(1/3)) + 13769/(29160*n^(2/3))). - Vaclav Kotesovec, Jul 30 2013

Extensions

More terms from Robert G. Wilson v, Jan 11 2007