cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069949 a(n) = Sum_{d|n} phi(d+1).

Original entry on oeis.org

1, 3, 3, 7, 3, 11, 5, 13, 7, 15, 5, 27, 7, 15, 13, 29, 7, 33, 9, 31, 17, 29, 9, 53, 15, 27, 19, 47, 9, 61, 17, 49, 23, 33, 19, 85, 19, 35, 25, 77, 13, 75, 21, 57, 39, 57, 17, 111, 25, 59, 33, 83, 19, 85, 31, 89, 39, 69, 17, 149, 31, 55, 53, 97, 29, 119, 33, 81, 35, 109, 25, 183
Offset: 1

Views

Author

Vladeta Jovovic, May 04 2002

Keywords

Crossrefs

Programs

  • Magma
    A069949:= func< n | (&+[EulerPhi(d+1): d in Divisors(n)]) >;
    [A069949(n): n in [1..100]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    A069949[n_]:= DivisorSum[n, EulerPhi[#+1] &];
    Table[A069949[n], {n,100}] (* G. C. Greubel, Jun 24 2024 *)
  • PARI
    a(n)=sumdiv(n, d, eulerphi(d+1) );  /* Joerg Arndt, Sep 30 2012 */
    
  • SageMath
    def A069949(n): return sum(euler_phi(k+1) for k in (1..n) if (k).divides(n))
    [A069949(n) for n in range(1,101)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{k=1..n} phi(gcd(n,k) + 1)/phi(n/gcd(n,k)). - Richard L. Ollerton, May 09 2021