A069955 Let W(n) = Product_{k=1..n} (1 - 1/4k^2), the partial Wallis product (lim_{n->oo} W(n) = 2/Pi); then a(n) = numerator(W(n)).
1, 3, 45, 175, 11025, 43659, 693693, 2760615, 703956825, 2807136475, 44801898141, 178837328943, 11425718238025, 45635265151875, 729232910488125, 2913690606794775, 2980705490751054825, 11912508103174630875, 190453061649520333125, 761284675790187924375
Offset: 0
References
- Orin J. Farrell and Bertram Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..832
- Boris Gourévitch, L'univers de Pi.
Crossrefs
Programs
-
Mathematica
a[n_] := Numerator[Product[1 - 1/(4*k^2), {k, 1, n}]]; Array[a, 20, 0] (* Amiram Eldar, May 07 2025 *)
-
PARI
a(n) = numerator(prod(k=1, n, 1-1/(4*k^2))); \\ Michel Marcus, Oct 22 2016
Formula
a(n) = numerator(W(n)), where W(n) = (2*n)!*(2*n+1)!/((2^n)*n!)^4.
a(n) = (-1)^n*A056982(n)*C(-1/2,n)*C(n+1/2,n). - Peter Luschny, Apr 08 2016
Comments