cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056982 a(n) = 4^A005187(n). The denominators of the Landau constants.

Original entry on oeis.org

1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904, 18446744073709551616, 295147905179352825856, 1180591620717411303424
Offset: 0

Views

Author

Keywords

Comments

Also equal to A046161(n)^2.
Let W(n) = Product_{k=1..n} (1- 1/(4*k^2)), the partial Wallis product with lim n -> infinity W(n) = 2/Pi; a(n) = denominator(W(n)). The numerators are in A069955.
Equivalently, denominators in partial products of the following approximation to Pi: Pi = Product_{n >= 1} 4*n^2/(4*n^2-1). Numerators are in A069955.
Denominator of h^(2n) in the Kummer-Gauss series for the perimeter of an ellipse.
Denominators of coefficients in hypergeometric([1/2,-1/2],[1],x). The numerators are given in A038535. hypergeom([1/2,-1/2],[1],e^2) = L/(2*Pi*a) with the perimeter L of an ellipse with major axis a and numerical eccentricity e (Maclaurin 1742). - Wolfdieter Lang, Nov 08 2010
Also denominators of coefficients in hypergeometric([1/2,1/2],[1],x). The numerators are given in A038534. - Wolfdieter Lang, May 29 2016
Also denominators of A277233. - Wolfdieter Lang, Nov 16 2016
A277233(n)/a(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2, where g(n) = (2*n)!/(2^n*n!)^2 = A001790(n)/A046161(n). - Peter Luschny, Sep 27 2019

References

  • J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 84. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
  • O. J. Farrell and B. Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77.

Crossrefs

Apart from offset, identical to A110258.
Equals (1/2)*A038533(n), A038534, A277233.

Programs

  • Maple
    A056982 := n -> denom(binomial(1/2, n))^2:
    seq(A056982(n), n=0..19); # Peter Luschny, Apr 08 2016
    # Alternatively:
    G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20):
    [seq(coeff(ser,x,n), n=0..19)]: denom(%); # Peter Luschny, Sep 28 2019
  • Mathematica
    Table[Power[4, 2 n - DigitCount[2 n, 2, 1]], {n, 0, 19}] (* Michael De Vlieger, May 30 2016, after Harvey P. Dale at A005187 *)
    G[x_] := (2 EllipticK[x])/(Pi (1 - x));
    CoefficientList[Series[G[x], {x, 0, 19}], x] // Denominator (* Peter Luschny, Sep 28 2019 *)
  • PARI
    a(n)=my(s=n); while(n>>=1, s+=n); 4^s \\ Charles R Greathouse IV, Apr 07 2012

Formula

a(n) = (denominator(binomial(1/2, n)))^2. - Peter Luschny, Sep 27 2019

Extensions

Edited by N. J. A. Sloane, Feb 18 2004, Jun 05 2007

A124399 a(n) = 4^(n - bitcount(n)) where bitcount(n) = A000120(n).

Original entry on oeis.org

1, 1, 4, 4, 64, 64, 256, 256, 16384, 16384, 65536, 65536, 1048576, 1048576, 4194304, 4194304, 1073741824, 1073741824, 4294967296, 4294967296, 68719476736, 68719476736, 274877906944, 274877906944, 17592186044416, 17592186044416
Offset: 0

Views

Author

Wolfdieter Lang, Nov 10 2006

Keywords

Comments

Numerators of one half of norm square of monic Legendre polynomials p_n(x).
The denominators of these polynomials are given by A069955.
The rationals N2(n) = 2*a(n)/A069955(n) give the minimal norm square for real monic polynomials. The norm square is defined as integral over the interval [-1,+1] of the square of the polynomials. Cf. the Courant-Hilbert reference.

Examples

			Rationals a(n)/A069955(n): [1, 1/3, 4/45, 4/175, 64/11025, 64/43659, 256/693693, ...].
Rationals N2(n): [2, 2/3, 8/45, 8/175, 128/11025, 128/43659, 512/693693,...].
		

References

  • Richard Courant and David Hilbert, Methoden der mathematischen Physik, Bd. I, 3, Auflage, Springer, 1993, pp. 73-74.

Crossrefs

Cf. A000120, A001790, A056982, A060818, A069955 (denominators of N2(n) as defined in the comments).

Programs

  • Julia
    bitcount(n) = sum(digits(n, base=2))
    a(n) = 4^(n - bitcount(n)) # Peter Luschny, Oct 01 2019
  • Mathematica
    a[n_] := 4^(n - DigitCount[n, 2, 1]); Array[a, 25, 0] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    a(n) = numerator((1/(2*n+1))*((2^n)/binomial(2*n,n))^2); \\ Michel Marcus, Aug 11 2019
    

Formula

a(n) = numerator(N2(n)/2) with N2(n)/2:=(1/(2*n+1))*((2^n)/binomial(2*n,n))^2.
N2(n)/2 = (1/(2*n+1))*(1/L(n))^2 with L(n)= A001790(n)/A060818(n), the leading coefficient of the Legendre polynomial P_n(x), in lowest terms.
Bisection: a(2*n)=a(2*n+1) = A056982(n), n>=0.

Extensions

New name by Peter Luschny, Oct 01 2019

A380949 a(n) = numerator(r(n)) where r(n) = (n/2)*(Pi/2)^cos(Pi*(n-1))*((n/2-1/2)!/(n/2)!)^2.

Original entry on oeis.org

0, 1, 1, 4, 9, 64, 75, 256, 1225, 16384, 19845, 65536, 160083, 1048576, 1288287, 4194304, 41409225, 1073741824, 1329696225, 4294967296, 10667118605, 68719476736, 85530896451, 274877906944, 1371086188563, 17592186044416, 21972535073125, 70368744177664, 176021737014375
Offset: 0

Views

Author

Peter Luschny, Feb 11 2025

Keywords

Examples

			r(n) = 0, 1, 1/2, 4/3, 9/16, 64/45, 75/128, 256/175, 1225/2048, ...
		

Crossrefs

Cf. A380950 (denominator), A380910, A380909, A019267 (asymptotic coefficients).

Programs

  • Maple
    r := n -> (n/2)*(Pi/2)^cos(Pi*(n-1))*((n/2-1/2)!/(n/2)!)^2:
    a := n -> numer(simplify(r(n))): seq(a(n), n = 0..28);
    # Alternative:
    r := n -> ifelse(n <= 1, n, (n - 1)/(n*r(n - 1))):
  • Mathematica
    Join[{0}, Numerator[FoldList[(#2 - 1)/(#2*#) &, Range[30]]]] (* Paolo Xausa, Feb 14 2025 *)

Formula

Product_{k=1..n} a(k) = A380910(n) / A380909(n).
r(n) = (n - 1)/(n*r(n - 1)) for n > 1.
numerator(r(2*n)) = A161736(n).
numerator(r(2*n+1)) = A056982(n).
numerator(r(2*n+1))/4^n = A124399(n).
denominator(r(2*n-2)) = A161737(n).
denominator(r(2*n+1)) = A069955(n).
denominator(r(2*n+1))/(2*n+1) = A038534(n).
denominator(r(2*n+2))/2 = A278145(n).
denominator(r(2*n+2))/2^(2*n+1) = A001901(n).
r(n) ~ (2/Pi)^((-1)^n)*(1 - 1/(2*n) + 1/(8*n^2) + 1/(16*n^3) - 5/(128*n^4) - 23/(256*n^5) ...).
Showing 1-3 of 3 results.