A069961 Define C(n) by the recursion C(0) = 4*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 4*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.
1, 17, 20, 73, 169, 464, 1193, 3145, 8212, 21521, 56321, 147472, 386065, 1010753, 2646164, 6927769, 18137113, 47483600, 124313657, 325457401, 852058516, 2230718177, 5840095985, 15289569808, 40028613409, 104796270449, 274360197908, 718284323305, 1880492771977
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Magma
F:=Fibonacci; [F(n+1)^2 + 16*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
-
Mathematica
a[n_]:= 16Fibonacci[n]^2+Fibonacci[n+1]^2; Array[a,30,0] 16First[#]^2+Last[#]^2&/@Partition[Fibonacci[Range[0,30]],2,1] (* Harvey P. Dale, Nov 08 2011 *)
-
PARI
a(n) = round((2^(-1-n)*(-15*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-35+sqrt(5))+(3+sqrt(5))^n*(35+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
-
PARI
Vec(-(x-1)*(16*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
-
SageMath
f=fibonacci; [f(n+1)^2 +16*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022
Formula
a(n) = 16*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x)*(1+16*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-15*(-1)^n*2^(2+n) - (3-sqrt(5))^n*(-35+sqrt(5)) + (3+sqrt(5))^n*(35+sqrt(5))))/5. - Colin Barker, Oct 01 2016
Extensions
Edited by Dean Hickerson, May 08 2002
Comments