cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069961 Define C(n) by the recursion C(0) = 4*i where i^2 = -1, C(n+1) = 1/(1 + C(n)), then a(n) = 4*(-1)^n/Im(C(n)) where Im(z) denotes the imaginary part of z.

Original entry on oeis.org

1, 17, 20, 73, 169, 464, 1193, 3145, 8212, 21521, 56321, 147472, 386065, 1010753, 2646164, 6927769, 18137113, 47483600, 124313657, 325457401, 852058516, 2230718177, 5840095985, 15289569808, 40028613409, 104796270449, 274360197908, 718284323305, 1880492771977
Offset: 0

Views

Author

Benoit Cloitre, Apr 28 2002

Keywords

Comments

If we define C(n) with C(0) = i then Im(C(n)) = 1/F(2*n+1) where F(k) are the Fibonacci numbers.
Here, C(n) = (F(n) + C(0)*F(n-1))/(F(n+1) + C(0)*F(n)) = (F(n)*(F(n+1) + 16*F(n-1)) + (-1)^n*4*i)/(F(n+1)^2 + 16*F(n)^2), where F(n) = Fibonacci(n), for which Im(C(n)) = 4*(-1)^n/(F(n+1)^2 + 16*F(n)^2).

Crossrefs

Programs

  • Magma
    F:=Fibonacci; [F(n+1)^2 + 16*F(n)^2: n in [0..40]]; // G. C. Greubel, Aug 17 2022
    
  • Mathematica
    a[n_]:= 16Fibonacci[n]^2+Fibonacci[n+1]^2; Array[a,30,0]
    16First[#]^2+Last[#]^2&/@Partition[Fibonacci[Range[0,30]],2,1] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    a(n) = round((2^(-1-n)*(-15*(-1)^n*2^(2+n)-(3-sqrt(5))^n*(-35+sqrt(5))+(3+sqrt(5))^n*(35+sqrt(5))))/5) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec(-(x-1)*(16*x+1)/((x+1)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016
    
  • SageMath
    f=fibonacci; [f(n+1)^2 +16*f(n)^2 for n in (0..40)] # G. C. Greubel, Aug 17 2022

Formula

a(n) = 16*F(n)^2 + F(n+1)^2, where F(n) = A000045(n) is the n-th Fibonacci number.
From Colin Barker, Jun 14 2013: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3).
G.f.: (1-x)*(1+16*x) / ((1+x)*(1-3*x+x^2)). (End)
a(n) = (2^(-1-n)*(-15*(-1)^n*2^(2+n) - (3-sqrt(5))^n*(-35+sqrt(5)) + (3+sqrt(5))^n*(35+sqrt(5))))/5. - Colin Barker, Oct 01 2016

Extensions

Edited by Dean Hickerson, May 08 2002