cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069975 a(n) = n*(16*n^2 - 1).

Original entry on oeis.org

15, 126, 429, 1020, 1995, 3450, 5481, 8184, 11655, 15990, 21285, 27636, 35139, 43890, 53985, 65520, 78591, 93294, 109725, 127980, 148155, 170346, 194649, 221160, 249975, 281190, 314901, 351204, 390195, 431970, 476625, 524256, 574959, 628830, 685965, 746460
Offset: 1

Views

Author

Benoit Cloitre, Apr 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n(16n^2-1),{n,40}] (* Harvey P. Dale, Dec 17 2018 *)
  • PARI
    a(n) = n*(16*n^2-1); \\ Michel Marcus, Nov 25 2013
    
  • PARI
    my(x='x+O('x^37)); Vec(3*x*(5+22*x+5*x^2)/(1-x)^4) \\ Elmo R. Oliveira, Sep 05 2025

Formula

Sum_{n>=1} 1/a(n) = 3*log(2) - 2 = A016631 - 2. (Ramanujan)
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - log(2) + sqrt(2)*log(sqrt(2)-1). - Amiram Eldar, Jun 24 2022
From Elmo R. Oliveira, Sep 05 2025: (Start)
G.f.: 3*x*(5 + 22*x + 5*x^2)/(x-1)^4.
E.g.f.: x*(15 + 48*x + 16*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
a(n) = A069140(n)/4. (End)

Extensions

More terms from Elmo R. Oliveira, Sep 05 2025