A070003 Numbers divisible by the square of their largest prime factor.
4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 75, 81, 98, 100, 108, 121, 125, 128, 144, 147, 150, 162, 169, 196, 200, 216, 225, 242, 243, 245, 250, 256, 288, 289, 294, 300, 324, 338, 343, 361, 363, 375, 392, 400, 432, 441, 450, 484, 486, 490, 500, 507
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Paul Erdős and Ron L. Graham, On products of factorials, Bull. Inst. Math. Acad. Sinica 4:2 (1976), pp. 337-355. [alternate link]
- Paul Erdős and Ilias Kastanas, Solution 6674:The smallest factorial that is a multiple of n, Amer. Math. Monthly 101 (1994) 179.
- A. J. Kempner, Miscellanea, Amer. Math. Monthly, 25 (1918), 201-210. See Section II, "Concerning the smallest integer m! divisible by a given integer n."
- Eric Weisstein's World of Mathematics, Greatest Prime Factor
- Eric Weisstein's World of Mathematics, Totient Function
Crossrefs
Programs
-
Maple
isA070003 := proc(n) if modp(n,A006530(n)^2) = 0 then # code re-use true; else false; end if; end proc: A070003 := proc(n) option remember ; if n =1 then 4; else for a from procname(n-1)+1 do if isA070003(a) then return a end if; end do: end if; end proc: seq( A070003(n),n=1..80) ; # R. J. Mathar, Jun 27 2024
-
Mathematica
p[n_] := FactorInteger[n][[-1, 1]]; ep[n_] := EulerPhi[n]; fQ[n_] := p[ep[n]] == 1 + ep[p[n]]; Select[ Range[ 510], fQ] (* Robert G. Wilson v, Mar 26 2012 *) Select[Range[500], FactorInteger[#][[-1,2]] > 1 &] (* T. D. Noe, Dec 06 2012 *)
-
PARI
for(n=3,1000,if(component(component(factor(n),1),omega(n))==component(component(factor(eulerphi(n)),1),omega(eulerphi(n))),print1(n,",")))
-
PARI
is(n)=my(f=factor(n)[,2]);f[#f]>1 \\ Charles R Greathouse IV, Mar 21 2012
-
PARI
sm(lim,mx)=if(mx==2,return(vector(log(lim+.5)\log(2)+1,i,1<<(i-1))));my(v=[1]);forprime(p=2,min(mx,lim),v=concat(v,p*sm(lim\p,p)));vecsort(v) list(lim)=my(v=[]);forprime(p=2,sqrt(lim),v=concat(v,p^2*sm(lim\p^2,p)));vecsort(v) \\ Charles R Greathouse IV, Mar 27 2012
-
Python
from sympy import factorint def ok(n): f = factorint(n); return f[max(f)] >= 2 print(list(filter(ok, range(4, 508)))) # Michael S. Branicky, Apr 08 2021
Formula
Erdős proved that there are x * exp(-(1 + o(1))sqrt(log x log log x)) members of this sequence up to x. - Charles R Greathouse IV, Mar 26 2012
Extensions
New name from Jonathan Sondow and Charles R Greathouse IV, Mar 27 2012
Comments