cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228180 The number of single edges on the boundary of ordered trees with n edges.

Original entry on oeis.org

0, 1, 2, 6, 19, 61, 199, 661, 2234, 7668, 26674, 93858, 333524, 1195288, 4315468, 15681838, 57312643, 210529213, 776872243, 2878482523, 10704933793, 39945106573, 149511432793, 561182969173, 2111812422871, 7965992783803, 30114859723751, 114079902339303, 432975153092011, 1646215731143667
Offset: 0

Views

Author

Louis Shapiro, Aug 20 2013

Keywords

Comments

Apparently the partial sums of A070031. - R. J. Mathar, Aug 25 2013

Examples

			For n=3 the UUUDDD has 3 single edges while UUDDUD, UDUUDD and UUDUDD each have one single edge, i.e., an edge with no siblings.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x*(1-Sqrt[1-4*x])/(2*x) + 2*x^3*((1-Sqrt[1-4*x])/(2*x))^4)/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    x = 'x + O('x^66);
    C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
    gf = (x*C+2*x^3*C^4)/(1-x);
    concat([0], Vec(gf) ) \\ Joerg Arndt, Aug 21 2013

Formula

G.f.: (x*C+2*x^3*C^4)/(1-x) where C is the g.f. for the Catalan numbers A000108.
Conjecture: 2*(n+1)*a(n) +(-13*n+5)*a(n-1) +(23*n-37)*a(n-2) +6*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Aug 25 2013
a(n) ~ 5*4^n / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2014

A306423 Number of coalescent histories for pseudocaterpillar gene trees G and caterpillar species trees S.

Original entry on oeis.org

3, 11, 37, 124, 420, 1441, 5005, 17576, 62322, 222870, 802978, 2912168, 10623470, 38956365, 143521725, 530985360, 1971965490, 7348812570, 27472909590, 103002205800, 387205269360, 1459146890058, 5511120747282, 20858962792624, 79103096214100
Offset: 4

Views

Author

Noah A Rosenberg, Feb 14 2019

Keywords

Comments

Consider a binary, rooted, leaf-labeled caterpillar species tree G = (...((((A_1, A_2), A_3), A_4), A_5),..., A_n) and a binary, rooted, leaf-labeled pseudocaterpillar gene tree (...(((A_1, A_2), (A_3, A_4)), A_5),..., A_n). The pseudocaterpillar family of trees is defined for n>=5 leaves (Rosenberg 2007). Sequence a(n) gives the number of coalescent histories for (G,S).
A slightly different definition of pseudocaterpillar trees applies for n=4 and adds term a(4)=3 to a (see Table 4 of Alimpiev & Rosenberg 2021). - Noah A Rosenberg, Feb 10 2025

Examples

			For n=5, consider species tree ((((A_1, A_2), A_3), A_4), A_5) and gene tree ((((A_1, A_2), (A_3, A_4)), A_5). Label the nodes of the species tree 1, 2, 3, 4, from the cherry to the root, identifying each node with its immediate ancestral edge. Annotate the coalescent histories by vectors whose entries, in order, denote the locations of the coalescences of (A_1, A_2), (A_3, A_4), ((A_1, A_2), (A_3, A_4)), and ((((A_1, A_2), (A_3, A_4)), A_5). The a(5)=11 coalescent histories are (1,3,3,4), (1,3,4,4), (1,4,4,4), (2,3,3,4), (2,3,4,4), (2,4,4,4), (3,3,3,4), (3,3,4,4), (3,4,4,4), (4,3,4,4), and (4,4,4,4).
		

Crossrefs

A000108 gives the number of coalescent histories for matching caterpillar gene trees and species trees. A070031 gives the number of coalescent histories for matching pseudocaterpillar gene trees and species trees.

Programs

  • GAP
    List([5..30], n-> (19*n-40)*(n-3)*Binomial(2*n-2, n-1)/(4*n*(2*n-3)*(2*n-5))); # G. C. Greubel, Mar 07 2019
  • Magma
    [(19*n-40)*(n-3)*Binomial(2*n-2, n-1)/(4*n*(2*n-3)*(2*n-5)): n in [5..30]]; // G. C. Greubel, Mar 07 2019
    
  • Mathematica
    Table[(19n-40)(n-3) Binomial[2n-2, n-1]/(4n(2n-3)(2n-5)), {n, 5, 30}]
  • PARI
    {a(n)=(19*n-40)*(n-3)*binomial(2*n-2, n-1)/(4*n*(2*n-3)*(2*n-5))};
    for(n=5,30, print1(a(n), ", ")) \\ G. C. Greubel, Mar 07 2019
    
  • Sage
    [(19*n-40)*(n-3)*binomial(2*n-2, n-1)/(4*n*(2*n-3)*(2*n-5)) for n in (5..30)] # G. C. Greubel, Mar 07 2019
    

Formula

a(n) = (19*n-40)*(n-3)*(2*n-2)!/(4*n!*(n-1)!*(2*n-3)*(2*n-5)).
a(n) = (19*n-40)*(n-3)*C(n-1)/((2*n-3)*(2*n-5)), where C(n) is the Catalan numbers A000108.
G.f.: ((2 - 7*x + x^2) +(-2 + 3*x + x^2)*sqrt(1-4*x))/2. - G. C. Greubel, Mar 07 2019
D-finite with recurrence: +2*n*a(n) +(-11*n+18)*a(n-1) +(11*n-38)*a(n-2) +2*(2*n-11)*a(n-3)=0. - R. J. Mathar, Jan 27 2020
a(n) ~ 19 * 2^(2*n - 6) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 15 2022

Extensions

a(4)=3 prepended by Noah A Rosenberg, Feb 10 2025

A165996 Triangle read by rows: T(n,0) = (n+1)^2, T(n,k) = T(n,k-1) + T(n-1,k) for 0 < k < n, and T(n,n) = T(n,n-1).

Original entry on oeis.org

1, 4, 4, 9, 13, 13, 16, 29, 42, 42, 25, 54, 96, 138, 138, 36, 90, 186, 324, 462, 462, 49, 139, 325, 649, 1111, 1573, 1573, 64, 203, 528, 1177, 2288, 3861, 5434, 5434, 81, 284, 812, 1989, 4277, 8138, 13572, 19006, 19006, 100, 384, 1196, 3185, 7462, 15600
Offset: 0

Views

Author

Gerald McGarvey, Oct 03 2009

Keywords

Crossrefs

A070031 (main diagonal), A071736 (is 1, 3, then diagonal T(n, n-2))

Programs

  • PARI
    s=10;M=matrix(s,s);for(n=1,s,M[n,1]=n^2); for(n=2,s,for(k=2,n,M[n,k]=M[n,k-1]+M[n-1,k])); for(n=1,s,for(k=1,n,print1(M[n,k],", ")))

A355044 Number of coalescent histories for matching gene trees and species trees with n leaves and a 5-leaf seed tree.

Original entry on oeis.org

10, 37, 130, 453, 1584, 5577, 19786, 70720, 254524, 921842, 3357908, 12294995, 45229500, 167093505, 619689690, 2306312580, 8611143420, 32246815350, 121085968380, 455817192090, 1719872196432, 6503354706762, 24640476660420, 93534587913648, 355675196682904
Offset: 5

Views

Author

Noah A Rosenberg, Jun 16 2022

Keywords

Comments

a(n) is the number of coalescent histories for matching gene tree G and species tree S, where G and S are identically labeled and have shape (...((((A_1,A_2),A_3),(A_4,A_5)),.),.),...), with n leaves.

Crossrefs

Cf. A000108, A070031 (for the same computation with a 4-leaf seed tree).

Formula

a(n) = ((23*n^2-131*n+180)/(4*(2n-3)*(2n-5)))*(2n-2)!/((n-1)!*n!).
a(n) = ((23*n^2-131*n+180)/(4*(2n-3)*(2n-5)))*A000108(n-1).
Showing 1-4 of 4 results.