cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A055940 Counterbalanced numbers: Composite numbers k such that phi(k)/(sigma(k)-k) is an integer.

Original entry on oeis.org

133, 403, 583, 713, 817, 2077, 2623, 2923, 4453, 4717, 5311, 5773, 7093, 7747, 9313, 11023, 11581, 11653, 12877, 14353, 15553, 19303, 20803, 21409, 21733, 21971, 24307, 31169, 35033, 39283, 39337, 43873, 46297, 46357, 50573, 50879, 53863
Offset: 1

Views

Author

Robert G. Wilson v, Jul 22 2000

Keywords

Comments

Banks and Luca (2007) showed that the number of terms <= x, N(x) <= x * exp(-((1/3)*(log(8))^(1/3) + o(1))*(log(x))^(1/3)*(log(log(x)))^(1/3)) as x -> infinity, and that under Dickson's conjecture this sequence is infinite, since for each positive integer m, if p = 5m + 1 and q = 20m + 13 are primes, then p*q is a term. - Amiram Eldar, Apr 13 2020

Examples

			k = 133 = 7*19: phi(133)=108, sigma(133)-133 = 1+7+19 = 27, q = 4.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n); If[ !PrimeQ[n]&&IntegerQ[s], Print[n]], {n, 2, 1000000}]
    Select[Range[54000],CompositeQ[#]&&IntegerQ[EulerPhi[#]/(DivisorSigma[ 1,#]-#)]&] (* Harvey P. Dale, Nov 16 2021 *)
  • PARI
    is(n)=!isprime(n) && n>1 && eulerphi(n)%(sigma(n)-n)==0 \\ Charles R Greathouse IV, Jan 02 2014

A062972 Numbers k such that the Chowla function of k is divisible by phi(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Jason Earls, Jul 24 2001

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.
Sequence contains all primes; see A070037 for nonprime terms. - Charles R Greathouse IV, Apr 14 2010

Crossrefs

Programs

  • Mathematica
    chowla[1] = 0; chowla[n_] := DivisorSigma[1, n] - n - 1; Select[Range[270], Divisible[chowla[#], EulerPhi[#]] &] (* Amiram Eldar, Dec 01 2019 *)
  • PARI
    j=[]; for(n=1,600, if(Mod(sigma(n)-n-1,eulerphi(n)) == 0,j=concat(j,n))); j

A070159 Numbers k such that phi(k)/(sigma(k)-k) is an integer.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Comments

This sequence consists of all primes p (for which the given ratio equals (p-1)/1, see A000040) and of composites listed in A055940 (see examples).
Up to 10^7, there is no element of this sequence having more than 2 prime factors. - M. F. Hasler, Dec 11 2007

Examples

			The prime p=47 is in this sequence since phi[p]/(sigma[p]-p) = p-1 is an integer, as is the case for any other prime.
The composite n=403=13*31 is in this sequence, since the ratio phi(n)/(sigma[n]-n) =360/(1+13+31)=8 is an integer.
The first few composites in this sequence are 133,403,583,713,... (A055940).
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n); If[IntegerQ[s], Print[n]], {n, 2, 1000}]
    Select[Range[2,300],IntegerQ[EulerPhi[#]/(DivisorSigma[1,#]-#)]&] (* Harvey P. Dale, Dec 25 2019 *)
  • PARI
    for(n=2,999,eulerphi(n)%(sigma(n)-n) || print1(n",")) \\ M. F. Hasler, Dec 11 2007

Formula

{ a(k) } = { n in N | A000010(n)/A001065(n) is an integer }.
{ a(k) } = { A000040(k) } union { A055940(k) }.

Extensions

Edited by M. F. Hasler, Dec 11 2007

A070160 Nonprime numbers k such that phi(k)/(sigma(k) - k - 1) is an integer.

Original entry on oeis.org

4, 9, 15, 25, 35, 49, 95, 119, 121, 143, 169, 209, 287, 289, 319, 323, 361, 377, 527, 529, 559, 779, 841, 899, 903, 923, 961, 989, 1007, 1189, 1199, 1343, 1349, 1369, 1681, 1763, 1849, 1919, 2159, 2209, 2507, 2759, 2809, 2911, 3239, 3481, 3599, 3721
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Comments

Euler phi value divided by Chowla function gives integer.

Examples

			In A062972, n=15: q = 8/8 = 1; n=101: q = 100/1 = 100. While integer quotient chowla(n)/phi(n) gives only 5 nonprime solutions below 20000000 (see A070037), here, the integer reciprocals, q = phi(n)/chowla(n) obtained with squared primes and with other composites. If n=p^2, q = p(p-1)/p = p-1. So for squared primes, the quotients give A006093.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n-1); If[IntegerQ[s], Print[n]], {n, 2, 100000}]

Formula

{k : A000010(k)/A048050(k) is an integer}.

A070161 Nonprime numbers n such that q=phi(n)/(sigma(n)-n-1) is an integer and n is not a prime square.

Original entry on oeis.org

15, 35, 95, 119, 143, 209, 287, 319, 323, 377, 527, 559, 779, 899, 903, 923, 989, 1007, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2507, 2759, 2911, 3239, 3599, 3827, 4031, 4607, 5183, 5207, 5249, 5459, 5543, 6439, 6887, 7067, 7279, 7739, 8159, 8639, 9179
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Examples

			n=35: phi(35)=24, sigma(35)=1+5+7+35=48, chowla(35)=12, quotient=2
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n-1); If[ !PrimeQ[n]&&!PrimeQ[Sqrt[n]]&&IntegerQ[s], Print[n]], {n, 2, 100000}]

Formula

q=A000010(n)/A048050(n) and n is not in A001248.
Showing 1-5 of 5 results.