cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070048 Number of partitions of n into odd parts in which no part appears more than thrice.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 18, 21, 24, 27, 32, 36, 41, 48, 54, 61, 70, 78, 88, 100, 112, 127, 143, 159, 179, 199, 222, 248, 276, 308, 342, 380, 421, 465, 516, 570, 629, 697, 767, 845, 932, 1022, 1124, 1236, 1355, 1488, 1631, 1785, 1954, 2136
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2002

Keywords

Comments

Also number of partitions of n into distinct parts in which no part is multiple of 4. - Vladeta Jovovic, Jul 31 2004
McKay-Thompson series of class 64a for the Monster group.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
T64a = 1/q + q^7 + q^15 + 2*q^23 + q^31 + 2*q^39 + 3*q^47 + 3*q^55 + 4*q^63 + ...
		

Crossrefs

Cf. A000700 (m=2), A003105 (m=3), A096938 (m=5), A261770 (m=6), A097793 (m=7), A261771 (m=8), A112193 (m=9), A261772 (m=10).

Programs

  • Haskell
    a070048 = p a042968_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^2, x^4], {x, 0, n}]; (* Michael Somos, Jul 01 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^4] / (QPochhammer[ x] QPochhammer[ x^8]), {x, 0, n}]; (* Michael Somos, Jul 01 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0 ,A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^8 + A)), n))};
    

Formula

G.f.: Product_{i>0} (1+x^i)/(1+x^(4*i)). - Vladeta Jovovic, Jul 31 2004
Expansion of chi(x) * chi(x^2) = psi(x) / psi(-x^2) = phi(-x^4) / psi(-x) = chi(-x^4) / chi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Jul 01 2014
Expansion of q^(1/8) * eta(q^2) * eta(q^4) / (eta(q) * eta(q^8)) in powers of q.
Euler transform of period 8 sequence [1, 0, 1, -1, 1, 0, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) + 3*u*v. - Michael Somos, Jul 01 2014
G.f.: Product_{k>0} (1 - x^(8*k - 4)) / (1 - x^(2*k - 1)).
a(n) ~ exp(sqrt(n)*Pi/2) / (4*n^(3/4)) * (1 - (3/(4*Pi) + Pi/32) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017

Extensions

Additional comments from Michael Somos, Dec 04 2002