cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A070080 Smallest side of integer triangles [a(n) <= A070081(n) <= A070082(n)], sorted by perimeter, lexicographically ordered.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 2, 3, 2, 3, 1, 2, 3, 3, 2, 3, 4, 1, 2, 3, 3, 4, 2, 3, 4, 4, 1, 2, 3, 3, 4, 4, 5, 2, 3, 4, 4, 5, 1, 2, 3, 3, 4, 4, 5, 5, 2, 3, 4, 4, 5, 5, 6, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 2, 3, 4, 4, 5, 5, 6, 6, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 2, 3, 4, 4, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Cf. A316841, A316843, A316844, A316845 (sides (i,j,k) with j + k > i >= j >= k >= 1).
Cf. A331244, A331245, A331246 (similar, but triangles sorted by radius of enclosing circle), A331251, A331252, A331253 (triangles sorted by area), A331254, A331255, A331256 (triangles sorted by radius of circumcircle).

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    triangles[[All, 1]] (* Jean-François Alcover, Jun 12 2012, updated Jul 09 2017 *)

Formula

a(n) = A070083(n) - A070082(n) - A070081(n).

A070081 Middle side of integer triangles [A070080(n) <= a(n) <= A070082(n)], sorted by perimeter, sides lexicographically ordered.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 3, 5, 4, 3, 4, 5, 4, 4, 6, 5, 4, 5, 4, 6, 5, 4, 5, 7, 6, 5, 6, 4, 5, 5, 7, 6, 5, 6, 5, 8, 7, 6, 7, 5, 6, 5, 6, 8, 7, 6, 7, 5, 6, 6, 9, 8, 7, 8, 6, 7, 5, 6, 7, 6, 9, 8, 7, 8, 6, 7, 6, 7, 10, 9, 8, 9, 7, 8, 6, 7, 8, 6, 7, 7, 10, 9, 8, 9, 7
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    triangles[[All, 2]] (* Jean-François Alcover, Jul 09 2017 *)

Formula

a(n) = A070083(n) - A070080(n) - A070082(n).

A070082 Largest side of integer triangles [A070080(n) <= A070081(n) <= a(n)], sorted by perimeter, sides lexicographically ordered.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 3, 4, 4, 5, 5, 5, 4, 5, 5, 4, 6, 6, 6, 5, 5, 6, 6, 6, 5, 7, 7, 7, 6, 7, 6, 5, 7, 7, 7, 6, 6, 8, 8, 8, 7, 8, 7, 7, 6, 8, 8, 8, 7, 8, 7, 6, 9, 9, 9, 8, 9, 8, 9, 8, 7, 7, 9, 9, 9, 8, 9, 8, 8, 7, 10, 10, 10, 9, 10, 9, 10, 9, 8, 9, 8, 7, 10, 10
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2&];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    triangles[[All, 3]] (* Jean-François Alcover, Jul 09 2017 *)

Formula

a(n) = A070083(n) - A070080(n) - A070081(n).

A070110 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer triangle with relatively prime side lengths.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

A070084(a(k)) = gcd(A070080(a(k)), A070081(a(k)), A070082(a(k))) = 1;
all integer triangles [A070080(a(k)), A070081(a(k)), A070082(a(k))] are mutually nonisomorphic.

Examples

			13 is a term: [A070080(13), A070081(13), A070082(13)]=[2,4,5], A070084(13)=gcd(2,4,5)=1.
		

Crossrefs

Programs

  • Mathematica
    m = 50 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; GCD[a, b, c] == 1] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

A070109 Number of right integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Right integer triangles have integer areas: see A070142, A051516.
a(n) is nonzero iff n is in A024364.

Examples

			For n=30 there are A005044(30) = 19 integer triangles; only one is right: 5+12+13 = 30, 5^2+12^2 = 13^2; therefore a(30) = 1.
		

Crossrefs

Programs

  • Mathematica
    unitaryDivisors[n_] := Cases[Divisors[n], d_ /; GCD[d, n/d] == 1];
    A078926[n_] := Count[unitaryDivisors[n], d_ /; OddQ[d] && Sqrt[n] < d < Sqrt[2n]];
    a[n_] := If[EvenQ[n], A078926[n/2], 0];
    Table[a[n], {n, 1, 1716}] (* Jean-François Alcover, Oct 04 2021 *)

Formula

a(n) = A078926(n/2) if n is even; a(n)=0 if n is odd.
a(n) = A051493(n) - A070094(n) - A070102(n).
a(n) <= A024155(n).

Extensions

Secondary offset added by Antti Karttunen, Oct 07 2017

A070094 Number of acute integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 5, 2, 5, 3, 3, 4, 6, 3, 6, 4, 7, 6, 10, 4, 10, 7, 8, 7, 10, 7, 14, 8, 12, 8, 17, 10, 17, 12, 13, 14, 20, 12, 21, 14, 18, 16, 25, 15, 23, 18, 22, 20, 30, 16, 32, 21, 29, 23, 32, 21, 38, 27, 33, 26, 43, 25
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051493(n) - A070102(n) - A070109(n).

Examples

			For n=10 there are A005044(10) = 2 integer triangles: [2,4,4] and [3,3,4]; both are acute, but GCD(2,4,4)>1, therefore a(9) = 1.
		

Crossrefs

A070102 Number of obtuse integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 1, 3, 2, 3, 2, 5, 3, 6, 2, 8, 5, 9, 5, 9, 6, 11, 6, 14, 9, 14, 9, 17, 11, 19, 12, 19, 15, 23, 13, 27, 18, 26, 16, 32, 20, 33, 21, 34, 26, 40, 23, 42, 29, 42, 29, 50, 32, 53, 35, 48, 41, 58, 37, 64, 45, 60, 42, 71
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051493(n) - A070094(n) - A070109(n).

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; only one of them is obtuse: 2^2+3^2<16=4^2 and GCD(2,3,4)=1, therefore a(9)=1.
		

Crossrefs

A070122 Numbers m such that [A070080(m), A070081(m), A070082(m)] is an acute scalene integer triangle with relatively prime side lengths.

Original entry on oeis.org

33, 45, 53, 60, 70, 83, 90, 92, 106, 114, 119, 132, 134, 142, 148, 162, 165, 168, 175, 181, 183, 197, 200, 203, 204, 218, 224, 237, 240, 245, 247, 261, 264, 267, 268, 282, 290, 293, 296, 309, 316, 317, 319, 333, 341, 345, 348
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			70 is a term because [A070080(70), A070081(70), A070082(70)]=[5<7<8], A070084(70)=gcd(5,7,8)=1, A070085(70)=5^2+7^2-8^2=25+49-64=10>0.
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    Position[triangles, {a_, b_, c_} /; a < b < c && GCD[a, b, c] == 1 && a^2 + b^2 - c^2 > 0] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A070125 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an acute isosceles integer triangle with relatively prime side lengths.

Original entry on oeis.org

1, 2, 4, 6, 7, 11, 12, 15, 16, 19, 22, 23, 27, 28, 35, 39, 40, 43, 46, 47, 51, 55, 58, 63, 64, 65, 72, 73, 81, 88, 94, 95, 98, 103, 107, 108, 109, 121, 124, 135, 136, 140, 150, 151, 159, 166, 167, 170, 178, 185, 186, 189, 194, 201, 205
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(14)=22: [A070080(22), A070081(22), A070082(22)]=[3<5=5], A070084(22)=gcd(3,5,5)=1, A070085(22)=3^2+5^2-5^2=9>0.
		

Crossrefs

A070131 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse scalene integer triangle with relatively prime side lengths.

Original entry on oeis.org

8, 13, 20, 21, 25, 29, 30, 36, 37, 41, 42, 44, 49, 56, 57, 59, 62, 66, 67, 69, 74, 75, 77, 78, 79, 80, 86, 89, 96, 97, 99, 100, 101, 102, 105, 110, 111, 113, 115, 122, 123, 125, 126, 127, 128, 130, 131, 138, 141, 144, 147, 152, 153
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(20)=69: [A070080(69), A070081(69), A070082(69)]=[5<6<9], A070084(69)=gcd(5,6,9)=1, A070085(69)=5^2+6^2-9^2=25+36-81=-20<0.
		

Crossrefs

Showing 1-10 of 21 results. Next