cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A070088 Number of integer-sided triangles with perimeter n and prime sides.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 3, 0, 2, 0, 2, 0, 3, 1, 3, 0, 5, 1, 5, 0, 4, 0, 3, 0, 5, 1, 5, 0, 4, 0, 4, 0, 2, 0, 3, 0, 5, 1, 3, 0, 6, 1, 8, 0, 5, 0, 5, 0, 4, 0, 3, 0, 5, 1, 6, 0, 6, 0, 4, 0, 7, 1, 7, 0, 9, 1, 10, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: two of them consist of primes, therefore a(15)=2.
		

Crossrefs

Programs

  • Mathematica
    triangleQ[sides_] := With[{s = Total[sides]/2}, AllTrue[sides, # < s&]];
    a[n_] := Select[IntegerPartitions[n, {3}, Select[Range[Ceiling[n/2]], PrimeQ]], triangleQ] // Length; Array[a, 90] (* Jean-François Alcover, Jul 09 2017 *)
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)

Formula

a(n) = A070090(n) + A070092(n) = A070095(n) + A070103(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * c(i) * c(k) * c(n-i-k), where c = A010051. - Wesley Ivan Hurt, May 13 2019

A070101 Number of obtuse integer triangles with perimeter n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 3, 2, 3, 3, 5, 3, 7, 4, 8, 5, 9, 7, 10, 8, 11, 9, 14, 11, 16, 12, 18, 14, 19, 17, 21, 18, 23, 21, 27, 22, 30, 24, 32, 27, 34, 30, 37, 33, 40, 35, 44, 37, 47, 40, 50, 44, 53, 49, 56, 52, 60, 55, 64, 57, 68
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

An integer triangle [A070080(k) <= A070081(k) <= A070082(k)] is obtuse iff A070085(k) < 0.

Examples

			For n=14 there are A005044(14)=4 integer triangles: [2,6,6], [3,5,6], [4,4,6] and [4,5,5]; two of them are obtuse, as 3^2+5^2<36=6^2 and 4^2+4^2<36=6^2, therefore a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Sign[Floor[(i^2 + k^2)/(n - i - k)^2]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 12 2019 *)

Formula

a(n) = A005044(n) - A070093(n) - A024155(n).
a(n) = A024156(n) + A070106(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)}
(1-sign(floor((i^2 + k^2)/(n-i-k)^2))) * sign(floor((i+k)/(n-i-k+1))). - Wesley Ivan Hurt, May 12 2019

A070095 Number of acute integer triangles with perimeter n and prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 1, 3, 0, 2, 0, 2, 0, 2, 1, 3, 0, 3, 0, 2, 0, 2, 0, 3, 0, 2, 1, 2, 0, 2, 1, 3, 0, 1, 0, 3, 0, 3, 0, 2, 0, 3, 1, 4, 0, 3, 0, 3, 0, 1, 1, 3, 0, 3, 1, 4, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			For n=17 there are A005044(17)=8 integer triangles: [1,8,8], [2,7,8], [3,6,8], [3,7,7], [4,5,8], [4,6,7], [5,5,7] and [5,6,6]: the two consisting of primes ([3,7,7] and [5,5,7]) are also acute, therefore a(17)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(PrimePi[i] - PrimePi[i - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]) (1 - Sign[Floor[(n - i - k)^2/(i^2 + k^2)]]) Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] (* Wesley Ivan Hurt, May 13 2019 *)

Formula

a(n) = A070088(n) - A070103(n).
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} (1 - sign(floor((n-i-k)^2/(i^2+k^2)))) * sign(floor((i+k)/(n-i-k+1))) * A010051(i) * A010051(k) * A010051(n-i-k). - Wesley Ivan Hurt, May 13 2019

A070105 Number of integer triangles with perimeter n and prime side lengths which are obtuse and scalene.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 5, 0, 5, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = 0 if n is even. - Robert Israel, Jul 26 2024

Crossrefs

Programs

  • Maple
    f:= proc(n) local a,b,q,bmin,bmax,t;
      t:= 0;
      if n::even then return 0 fi;
      for a from 1 to n/3 by 2 do
        if not isprime(a) then next fi;
        bmin:= max(a+1,(n+1)/2-a); if bmin::even then bmin:= bmin+1 fi;
        q:= (n^2-2*n*a)/(2*(n-a));
        if q::integer then bmax:= min((n-a)/2, q-1) else bmax:= min((n-a)/2, floor(q)) fi;
        t:= t + nops(select(b -> isprime(b) and isprime(n-a-b), [seq(b,b=bmin .. bmax,2)]))
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 26 2024

A070108 Number of integer triangles with perimeter n and prime side lengths which are obtuse and isosceles.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(k)<=1 until k = 140, for k = 141 there are A005044(141)=432 integer triangles, a(141)=2 as
[37=37<67]: 37+37+67 = 141 and 2*(37^2)<67^2 and 37, 67 are primes,
[41=41<59]: 41+41+59 = 141 and 2*(41^2)<59^2 and 41, 59 are primes.
		

Crossrefs

A070129 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse integer triangle with prime side lengths.

Original entry on oeis.org

5, 14, 30, 101, 133, 153, 163, 193, 328, 334, 392, 444, 454, 472, 519, 542, 603, 621, 714, 771, 777, 795, 878, 907, 1005, 1123, 1135, 1508, 1526, 1538, 1694, 1818, 1848, 1858, 1888, 1999, 2023, 2037, 2064, 2066, 2193
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(3)=30: [A070080(30), A070081(30), A070082(30)]=[3,5,7], A070085(30)=3^2+5^2-7^2=9+25-49=-15>0.
		

Crossrefs

Showing 1-6 of 6 results.