cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A070118 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an acute integer triangle.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 11, 12, 15, 16, 18, 19, 22, 23, 24, 27, 28, 31, 33, 34, 35, 38, 39, 40, 43, 45, 46, 47, 48, 51, 53, 54, 55, 58, 60, 63, 64, 65, 68, 70, 71, 72, 73, 76, 81, 83, 84, 85, 88, 90, 92, 93, 94, 95, 98, 103, 106, 107, 108
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(21)=33: [A070080(33), A070081(33), A070082(33)]=[4,5,6], A070085(33)=4^2+5^2-6^2=16+25-36=5>0.
		

Crossrefs

Programs

  • Mathematica
    m = 50; (* max perimeter *)
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a^2 + b^2 - c^2 > 0] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

A070115 Numbers m such that [A070080(m), A070081(m), A070082(m)] is an isosceles integer triangle.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 18, 19, 22, 23, 24, 26, 27, 28, 31, 32, 34, 35, 38, 39, 40, 43, 46, 47, 48, 51, 52, 54, 55, 58, 61, 63, 64, 65, 68, 71, 72, 73, 76, 81, 82, 84, 85, 88, 91, 93, 94, 95, 98, 103, 104, 107, 108
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			26 is a term because [A070080(26), A070081(26), A070082(26)] = [4=4<6].
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, a_, b_} | {a_, b_, b_}] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A070098 Number of integer triangles with perimeter n which are acute and isosceles.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 14, 15, 15, 16, 15
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Equivalently, the number of obtuse isosceles integer triangles with base n. - Charlie Marion, Jun 18 2019

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; both isosceles are also acute.
		

Crossrefs

Programs

  • Magma
    [Floor(k/2)-Floor(k/(2 + Sqrt(2)))-((k + 1) mod 2): k in [1..76]]; // Marius A. Burtea, Jun 21 2019

Formula

a(n) = A070093(n)-A024154(n); a(n) = A059169(n)-A070106(n).
a(n) = floor(n/2) - floor(n/(2 + sqrt(2))) - ((n + 1) mod 2). - David Pasino, Jun 27 2016
a(n) = A004526(n-1) - A183138(n). - R. J. Mathar, May 22 2019
Showing 1-3 of 3 results.